MIGROSOFT

TRS=-80
FORTRAN PACKAG

user’'s manual

T i
P

-~

SECTION 1

1.
1.

N =2

SECTION 2

NN
o o o
WN -

SECTION 3
3.1
3.2
SECTION 4

4.1
4.2

Microsoft
TRS-80 FORTRAN Package
User's Manual

CONTENTS

Introduction e o o o o © o 8 @

Sample Session .« ¢ o o o o o o
Note on TRS-80 FORTRAN Manuals

L]
L
L J

TRS-80 FORTRAN Compiler .
Running the Compiler . « « « -
Command FOrmat =« « o ¢ o o o
Input/Output Device Names . . .
TRS-80 FORTRAN Disk Files . . .

pefault Disk Filenames .
CALL OPEN ¢ o o o o o o o o o o

L]
[]
L

Error Messages . o« o ¢ o o o °

FORTRAN Compiler Error Messages
FORTRAN Runtime Error Messages

14
14
14
18
19
19
19
21

21
23

TRS-80 FORTRAN User's Manual Page S
{ SECTION 1
Introduction
The Microsoft TRS-80 FORTRAN Package contains the following

gsoftware and documentation:

Documentation

Disk Software

F3d/cmo ¥

M8@/ Mo 41
L8o/CMD 42

cRefFsp/cmp ¥
ForLIB/REL #2

gpir/ovMe #2

TRS-80 FORTRAN Package
User's Manual
TRS=-80 FORTRAN Compiler
Microsoft FORTRAN=-80
Reference Manual

MACRO-80 Assembler
LINK=-80 Linking Loader
CREF-80 Cross Reference
Facility

FORLIB/REL FORTRAN-80
Subroutine Library

Microsoft Utility
Scoftware Manual

Microsoft EDIT-80 User's
Guide

EDIT-80 Text Editor

NOTE

We recommend that you immediately
make back-up copies of both diskettes.

TRS-80 FORTRAN User's Manual Page 6

1.1

Sample Session

The fastest way to familiarize yourself with the
TRS-80 FORTRAN Package is to use it. You can start
using the software right away by following the
sample coding session outlined below. A FORTRAN
program is provided in Figure 1 for use during the
session. Before beginning STEP 1, you should be at
TRSDOS command level.

STEP 1: Place diskette #2 in the disk drive and
enter the command:

EDIT

This loads the EDIT-80 text editor.
EDIT-80 will respond with

FILE:

If you are using the program in Figure 1,
type the filename TEMP/FOR followed by the
<break> key. If you are using your own
FORTRAN program, type any legal TRSDOS
filename., Always follow the filename with
<break> when creating a new file and with
<enter> when reading in an existing file.

After EDIT-80 prints the message:

Creating

Version x.x

Copyright 1977,78 (c) by Microsoft
Created: xxxx

Xxxx Bytes free

4

enter the command:
1

EDIT-80 will print 00100, which 1is the
first line number.

STEP 2: Start entering the FORTRAN program as
listed in Figure 1 (or enter your own
FORTRAN program). EDIT-80 will type the
next line number each time ycu <enter> a
line.

While you're typing in your program, all
of EDIT-80's editing capabilities are
available to you. Read through the
EDIT-80 User's Guide. You'll see how easy
it is to insert and delete lines, modify

W Al

)}

TRS-80 FORTRAN User's Manual Page 7

STEP 3:

STEP 4:

STEP S:

text, and search for text. This is a geood
chance to experiment with EDIT=-80.

When writing any FORTRAN program for your
TRS-80, use the Microscft FORTRAN-80
Reference Manual to determine the correct
syntax and usage of all FORTRAN
statements.,

When you are finished ¢typing in the
program, type a <break> after the next
available line number to return to EDIT-80
cormmand level, To exit the editor, enter
the command:

E

Now there is a FORTRAN program called
TEMP/FOR on disk that is ready to compile.
This program is the source file,

Syntax check.)

Before proceeding, it is a good idea to
check the program for syntax erIrors.
Removing syntax errors now eliminates a
possible recompilation later. To perform
the syntax check on the source file called
TEMP/FOR, place diskette ¢1 in the disk
drive and type:

F80 =TEMP

This command loads the FORTRAN compiler
and compiles the source file without
producing an object or listing file (more
on object and listing files in STEP 5).
If there are errors, run EDIT-80 again
(STEP 1) and correct them.

Compile the source file.

To compile the source file called TEMP/FOR
and produce an object ard listing file,
type the following:

F80 TEMP,TEMP=TEMP

Now there is a relocatable ocbject file
called TEMP/REL ané a listing file called
TEMP/LST on the disk. REL and LST are the
default extensions supplied by the
compiler. The object file contains the
machine-readable code generated by the
compiler. The listing file contains the
FORTRAN program statements and the machine
language generated by each statement. See

TRS-80 FORTRAN User's Manual Page 8

STEP 6:

STEP 7:

Figure 2 for a copy of the listing file
generated by TEMP.

Load and execute the program,

To load the program into memory and
execute it, put diskette #2 in the disk
drive and type:

L80 TEMP-G

This command runs LINK-80, which in turn
loads the object file TEMP/REL into the
correct memory locations, searches the
system library for any undefined
references, and executes the program.
Your program output should appear on the
screen as shown in Figure 3.

Save the object code.

The object file, once it has been loaded
by LINK-80, is in a form that can be
executed by the TRS-80 computer. To save
a copy of this file, type:

L80 TEMP~-N,TEMP-E

This command writes a copy of the
executable object file to disk under the
name TEMP/CMD, and then exits ~ to TRSDOS.
The program may subsegquently be run by
entering the command:

TEMP
at TRSDOS command ievel. For more

information on LINK=-80, see Section 2 of
the Microsoft Utility Software Manual.

TRS-80 FORTRAN User's Manual Page 9
}j\
- FIGURE _1 FORTRAN SOURCE FILE - TEMP/FOR

00100 o CONVERT FAHRENHEIT TO CENTIGRADE
00200 INTEGER F

00300 WRITE(5,5) -

00400 S FORMAT (33H FAHRENHEIT CENTIGRADE)
00500 DO 20 FP=20,65,5

00600 C=5./9.*(F-32)

00700 WRITE(5,10)F,C

00800 10 PORMAT (12X,12,11X,F6.3)

00900 20 CONTINUE

01000 END

01100 $

L

“\\\\\\TThis is the echo

from the <break> key.)

- ‘
]

(5%
YRR

T,

1,

a2 o b2
[

R

L

ol .
(o Eo TOLLOR ORI 14 fa =

TRS-80 FORTRAN User's Manual

FIGURE 2

LISTING FILE TEMP/LST

3.3

FORTRAN-2O VER. 3—2 COPYRIGHT 157 <C> EB¥ MICROSOFT

EYTES: Z&33

CRERTED - $5—FEB~F9 4 -MAY-79

ooigyg C COMYERT FAHREMHEIT TO CENMTIGRRCE
Rl ni] INTEGER F -

ST WRITECS, S

g KN Tnrsiuln i Lo EC. $SL.

R R 3 Q‘Eﬂz‘:f." JF‘ #IHIT

PRI O as LC DE. SL

e ke Rlalul R LD HL. C 2k oal
IR T ulal= i ChRLL FW2

s Inial S FORMRTC(3IZH FAHREMHEIT
A e QunaF 7 cCrLL $riD

slabd el DO 29 F=20, €5, 95

BRE DA C=%, /9. «(F=32

PR aRLz” Lo HL., 014

AR R ool1s LD CFD, HL

QBTow WEITECS, 10OF. C

ORI R ao1s WD HL., ¢F2

o A oaiE " LD CE, FFEQ

1 2 S 1 I»:ﬂ:"lE < HDD ML, C‘E

e Ul F e ¢T : Sndgd v, HL

PRTORr e (e I LD HL, ¢ el e g
PO POR RS %% ’ g o 1 Ll

PR o Lo HL. ¢ [k o 1
T r Y SWAZE CHRLL FOE)

o WA ZE) HL, ¢ T 9o

o TR CHLL SMA

R R oz Lo HL. C

PO SR R % i cHLL $T1

PONFSET S 3 KT Lo CE. 1oL

PORTER SR S oz LC HL . t oS o
R Cul S CHRLL FlZ

Tappulel 1 FORNHTCiEH;IZ:liHJFé.EF

PR R 5 [T Lo CE.F

YRR e R I.:ﬂ‘ B Lt’ HL . { c‘l ‘:“:1 *‘
PRI R IR SR (R H. 92

PR T SIS E CRLL FIO

ek D4 E Lo CE. =

PO T sl L HL. ’ 2l RIEl
1 ke TS (e . 22

e ST oHLL sIl

PRpesreS IR b CALL MDD

RIS TRIN &0 CONTINUE

S RERIRI%) gEng:

-continued=-

pPage 10

CENTIGRADE

*

o e

TRS-BO FORTRAN User's Manual Page 11

{ P
QE. WK 2] u e i LD HL., <F>
T, kK PASF LD DE., 801%
Q5. doRucEk eOe2” ADD HL. DE
49 ek sl ” LD R, 41
L L R QS sue L
L5 R E L QOEs” LD ., B
G kN oo’ SBEC H
B T o037 JF F, 001%°
T RN o TR g CRLL S$EX
[T L 2 BOEF “ ei10u
WE.. wmrckkE avi’ esou
T, AR o722’ QeoOZ0s2
WL MRk GovT " egrel1os4
3.
S0, PEROGRAM UNIT LENGTH=@OTE <1z BYTEZ
P 1. DATH AREA LENGTH=@O4Q (&4 EYTEZ
82)
<. SUBFRCOUTINMNES REFERENCED :
€.
S $Ii $1G FINIT
€. SWZ s L1
ET. I0LE sMH 5Tl
2 EEX
e
0. VARIARELES:
s
- F QoL c G T;agaggg
72
74. LREELZE
g
TS, SSL QOOE L QG =0l Q0T
TT el GoacF "

TRS-80 FORTRAN User's Manual Page 12

FIGURE 3 TEMP/FOR PROGRAM OUTPUT

FAHRENHEIT CENTIGRADE
20 -6.667
25 -3,889
30 -1,111
35 1.667
40 4.444
45 7.222
50 10.000
SS 12,778
60 15.556

65 18.333

TRS-80 FORTRAN User's Manual Page 13

;/j\ , The TRS-80 FORTRAN Package provides a lot more
’ capability than is demonstrated in this short
gsession., For instance, you may wish to write
assembly language programs using MACRO-80 and link
them to your FORTRAN programs, O use them
independently for process control or some other
application. Or you might want tO incorporate
subroutines from FORTRAN's 1library into your own
aszembly language routines (see Appendix E of the
FORTRAN-80 Reference Manual). with the editor, it
is easy to create disk data files to be referenced
by your programs. It is possible to interface your
custom I/0 device by writing your own device driver
routine (See Appendix B of thre FORTRAN-B80 Reference
Manual). Keep experimenting, and you'll be
pleasantly surprised at how much computing power
has been added to your TRS-80.

1.2 Note on TRS-80 PORTRAN Manuals

The FORTRAN-80 Reference Manual * is strictly a
reference for the syntax and semantics of the
TRS-80 FORTRAN language. It is not intended as a
tutorial on FORTRAN programming. If you are new to
FORTRAN and need help learning the language, we
v suggest:

1. *"Guide to PORTRAN-IV Programming” by Daniel
McCracken (Wiley, 1965)

2. "Ten Statement FORTRAN Plus FORTRAN IV" by
Michael Kennedy and Martin B. Solomon
(Prentice-Hall, 1975, Second Edition)

3. °FORTRAN" by Kenneth P. Seidel (Goodyear,
1972)

The Microsoft Utility Software Manual is strictly 2
reference for the commands, switches, pseudo
operations and error messages of the MACRO-80
assembler and LINK-80 linking loader. It is not
intended as a tutorial on assembly language
programming. I1f you are unfamiliar with 280
assembly language, refer to the Radio Shack
Assembler/Editor Manual and zilog's 280-RIO
Relocating Assembler and Linker User's Manual.

TRS-80 FORTRAN User's Manual Page 14
SECTION 2

TRS-80 FORTRAN Compiler

If you followed the sample session, you are becoming
familiar with the software in your TRS-80 FORTRAN Package.
Now let's look specifically at the TRS-80 FORTRAN compiler.

2.1 Running the Compiler

When you give TRSDOS the command
F80

(diskette #1 must be in the disk drive), you are
running the TRS-80 FORTRAN compiler. The FORTRAN
compiler takes a FORTRAN program (source file) and
compiles it to generate a relocatable object file,
that is, a file that is in machine code. When the
compiler is ready to accept commands, it prompts
the user with an asterisk. To exit the compiler,
use the <break> key.

A command may also be typed on the same line as the
invocatioen. This is called a "command line." We
did this in the Sample Session when we typed the
command line:

F8Q0 =TEMP
After executing a command 1line, the compiler

automatically exits to the operating system.

2.2 Command Format

A compiler command conveys the name of the source
file you want to compile, and what options you want
to use. Here is the format for a compiler command
(square brackets indicate optional):

(object filename](,listing filename]=source filename[-switch...]

NOTE
All filenames must be in TRSDOS filename
format:
filename[/ext] [.password] [:drive#]. If-you
are using the compiler's default

extensions, it is not necessary to specify
an extension in a compiler command.

g

TRS-80 FORTRAN User's Manual Page 15

Let's

lock dindividually at each part of the

compiler command:;

1.

3.

Object filename

To create a relocatable object file, this part
of the command must be included. It is simply
the name that you want to call the object file,
The default extension for the object filename
is /REL.

Listing filename

To create a listing file, this part of the
command must be included. It is simply the
name that you want to call the 1listing file.
32§T default extension for the listing file is

Source filename

A compiler command must always include a source
filename == that is how the compiler "knows"
what to compile. It is simply the name of a
FORTRAN program you have saved on disk. The
default extension for a FORTRAN source filename
is /FOR. The source filename is always
preceded by an equal sign in a compiler
command.

Examples (asterisk is typed by FB80):

*=TEST . Compile the program TEST/FOR

without creating an object
file or listing file.

*TEST,TEST=TEST Compile the program TEST/FOR.

Create a relocatable object
file called TEST/REL and a
listing file called TEST/LST.

* ,TEST.PASS=TEST.PASS Compile the program TEST

/FOR,.PASS and create a

listing file called

TEST/LST.PASS (No object file

created) '
*TESTOBJI=TEST Compile the program TEST/FOR

and create an object file
called TESTOBJ/REL. (No
listing file created.)

Switch o
A switch on the end of a command specifies a
special parameter to be used during

compilation. Switches are always preceded by a
dash (=). More than one gwitch may be used in
the same command. The available switches are:

TRS-80 FORTRAN User's Manual Page 16

Switch

0

Examples:

Action

Print all 1listing addresses in
octal.

Print all 1listing addresses in
hexadecimal (default condition).

Do not list the object code that is
generated. List only the FORTRAN
source code.

Each <~P allocates an extra 100
bytes of stack space for use during
compilatioen. Use =P if stack
overflow errors occur during
compilation. Otherwise not needed.

Specifies to the compiler that: the
generated code should be in a form
which can be 1locaded into ROMs.
When a -M is specified, the
generated c¢ode will differ from
normal in the following ways:

1. FORMATs will be placeé in the
program area, with a "JMP" around
them.

2. Parameter blocks (for
subprogram calls with more than 3
parameters) will be initialized at
runtime, rather than being
initialized by the loader.

*CT.ME,CT.ME=CT.ME-Q Compile the program

*CT,CT=CT=N

CT/FOR.ME. Create a listing
file called CT/LST.ME and an
object file called CT/REL.ME.
The addresses in the listing
file will be in octal.

Compile the program CT/FOR.
Create an object file called
CT/REL and a listing file
called CT/LST. The listing
file will contain only the
FORTRAN source statements,
not the 'generated 0Jbject
code.

.....

il

TRS-80 FORTRAN User's Manual Page 17

o, *MAX10=MAX 10=-P=-P Compile the program MAX10/FOR
and create an object file
called MAX10/REL. The

compiler is allocated 200
extra bytes of stack space.

NOTE

If a FORTRAN program is intended for ROM,
the programmer should pe aware of the
. following ramifications:

1. DATA statements should not be used ¢to
initialize RAM. Such initialization is
done by the loader, and will therefore
not be present at execution. Variables

. and arrays may be initialized during
execution via assignment statements, Or
by READing into them.

2. PORMATs should not be read into during
execution.

T 3. If the standard 1library 1/0 routines
/ are used, DISK files should not be
OPENed on any LUNs other than 6, 7, 8,

s, 10. 1f other LUNs are needed for

pisk I/0, $LUNTB should be recompiled

with the appropriate addresses pointing
to the Disk driver routine.

A library routine, $INIT, sets the stack
pointer at the top of available memory (as
indicated by the operatin system) before
execution begins. ~

The calling convention is:

LXI B,<return address>
JMP $INIT

If the generated code is'intended for some
other machine, this routine should probably
be rewritten. The source of the standard
initialize routine is provided on the disk
as "INIT/.MAC". Only the portion of this
routine which sets up the stack pointer

o should ever be modified by the user. The
= FORTRAN library already contains the
standard initialize routine.

TRS-80 FORTRAN User's Manual Page 18

Input/Output Device Names

In the commands discussed so far, it 1is assumed
that all files are read from and written to the
disk. To use an I/0 device other than the disk,
specify the device name in place of the filename in
the compiler command.

The device names supplied by TRSDOS are:

*K1 Keyboard Input
*DO Display Output
*PR Printer Output

(*DO and *PR are available only with TRSDOS Versicn
2.2 or later.)

Examples:

*TEST, *PR=TEST Compile the program TEST/FOR.
Create an object file called
TEST/REL and output the listing
file, TEST/LST, at the printer.

*TEST,*DO=TEST=-N Compile the program TEST/FOR.
Create an object file called
TEST/REL and output the listing
file, TEST/LST at the video
display. The listing file will
only contain the FORTRAN source
statements, not the generated
object code.

*m*KI *KI is used only if you want to
input a source file from the
keyboard. This command compiles
the source file read from the
keyboard without creating a REL or
LST file.

REMEMBER: In FORTRAN I/0 statements (READ and
WRITE), LUNs 1, 3, 4, and S5 default to the
console/keyboard (*DO/*KI), LUN 2 defaults to the
line printer (*PR), and LUNs 6-10 default to the
disk drive.

.......

TRS-80 FORTRAN User's Manual | Page 19

SECTION 3

TRS-80 PORTRAN Disk Files

SEE ALSO FORTRAN-80 REFERENCE MANUAL, SECTION 8.3.

Default Disk FPilenames

TRS-80 FORTRAN may Aaccess either random or
sequential disk files. Any disk file that is
OPENed by a READ or WRITE statement is given a
default filename that depends on the LUN:

LUN pDefault Filename
6 FORTO06 /DAT
7 FORTO7/DAT
8 PORTO08/DAT
9 FORTO09/DAT
10 FORT10/DAT
L QP

T SRS

Instead of using READ or WRITE, a disk file may be
OPENed by calling the OPEN subroutine (see the
FORTRAN-80 Reference Manual, Section 8.3.2). The
format of an OPEN call is:

CALL OPEN (LUN, Filename, Reclen)
where:

LUN = a Logical Unit Number to be associated with
the file (must be an Integer constant or Integer
variable with a value between 1 and 10).

Filename = an ASCII name " which TRSDOS will
associate with the file. The Filename should be a
Hollerith or Literal constant, or & variable or
array name where the variable or array contains the
ASCII name. The Filename should be in the form
normally required by TRSDOS,

tilename/ext.password:d:ive#

and it should be terminated with a non-alpha
character, preferably a blang.

Reclen = The number of bytes you wish to specify
(up to 256) as the record length. The default
record length is 128 Dbytes.. Reclen must be an
Integer constant or Integer variable. If zero 1s

TRS-80 FORTRAN User's Manual Page 20
supplied for Reclen, the record length will be 256
bytes.

The following are examples of valid OPEN calls:
CALL OPEN (6,'TIME/DAT.JULY:1 ',256)
CALL OPEN (7, 'COUNT/NUM ',200)
CALL OPEN (1,'TESTQ/MIN:2 ',100)

’:X)

TRS-80 FORTRAN User's Manual Page 21

4.1

SECTION 4

Error Messages

FORTRAN Compiler Error Messages

The PORTRAN-80 Compiler detects two kinds of
errors: Warnings and Fatal Errors. When a Warning
is issued, compilation continues with the next item
on the source line. When a Fatal Error is found,
the compiler ignores the rest of the logical line,
including any continuation lines. warning messages
are preceded by percent signs (%), and Fatal Errors
by question marks (?). The editor line number, if
any, or the physical line number is printed next.
It is followed by the error code or error message.

Exanmple:

?Line 25: Mismatched Parentheses

SLine 16: Missing Integer Variable

When either type of error occurs, the program
should be changed so that it compiles without
errors. No guarantee is made that a program that
compiles with errors will execute sensibly.

Fatal Errors:

Error
Number Message

100 Illegal Statement Number

101 Statement Unrecognizable or Misspelled
102 " Illegal Statement Completion

103 Illegal DO Nesting

104 Illegal Data Constan

108 Missing Name

106 Illegal Procedure Name

107 Invalid DATA Constant or Repeat Factor
108 Incorrect Number of DATA Constants

109 Incorrect Integer Constant

110 Invalid Statement Number

111 Not a Variable Name

112 Illegal Logical Form Operator

113 Data Pool Overflow'

114 Literal String Too lLarge

1158 Invalid Data List Element in I1/0

116 Unbalanced DO Nest .

117 Identifier Too Long

118 Illegal Operator . -

119 Mismatched Parenthesis

TRS-80 FORTRAN User's Manual Page 22 =
120 Consecutive Operators
121 Improper Subscript Syntax
122 Illegal Integer Quantity
123 Illegal Hollerith Construction
124 Backwards DO reference
125 Illegal Statement Function Name
126 Illegal Character for Syntax
127 Statement Out of Sequence
128 Missing Integer Quantity
129 Invalid Logical Operator
130 Illegal Item Following INTEGER or REAL or
LOGICAL
131 Premature End Of File on Input Device
132 Illegal Mixed Mode Operation
133 Function Call with No Parameters
134 Stack Overflow '
135 Illegal Statement Following Logical IF

Warnings:

0 Duplicate Statement Label

1 Illegal DO Termination

2 Block Name = Procedure Name

3 Array Name Misuse

4 COMMON Name Usage

S Wrong Number of Subscripts "
6 Array Multiply EQUIVALENCEd within a Group ~
7 Multiple EQUIVALENCE of COMMON

8 COMMON Base Lowered

9 Non-COMMON Variable in BLOCK DATA

10 Empty List for Unformatted WRITE

1M Non-Integer Expression

12 Operand Mode Not Compatible with Operator
13 Mixing of Operand Modes Not Allowed

14 Missing Integer Variable

15 Missing Statement Number on FORMAT

16 Zero Repeat Factor

17 Zero Format Value

18 Format Nest Too Deep

19 Statement Number Not FORMAT Associated
20 Invalid Statement Number Usage

21 No Path to this Statement

22 . Missing Do Terminaticn

23 Code Output in BLOCK DATA

24 Undefined Labels Have Occurred

25 RETURN in a Main Program

26 STATUS Error on READ

27 Invalid Operand Usage °

28 Function with no Parameter

29 Hex Constant Overflow

30 Division by Zero

32 Array Name Expected .

33 Illegal Argument to ENCODE/DECODE

TRS-80 FORTRAN User's Manual Page 23

4.2

FORTRAN Runtime Error Messages

During execution of a FORTRAN program one Or more
of the following errors could occur. Fatal errors
cause execution to cease. Execution continues
after a warning error. However, execution wilil
cease after 20 warnings. Runtime eIICrs are
surrounded by asterisks as follows

SAFWER

Warning Errors:

IB Input Buffer Limit Exceeded
TL Too Many Left Parentheses in FORMAT
OB Output Buffer Limit Exceeded
DE Decimal Exponent Overflow
(Number in input stream had
an exponent larger than 99)
Is Integer Size Too Large
BE Binary Exponent Overflow
IN Input Record Too Long
ov Arithmetic Overflow
N Conversion Overflow
on REAL to INTEGER Conversion
SN . Argument to SIN Too Large
A2 Both Arguments of ATAN2 are 0
I0 Illegal I/0 Operation
BI Buffer Size Exceeded During Binary I/0
RC Negative Repeat Count in FORMAT

Fatal Errors:

ID Illegal FORMAT Descriptor

ro FORMAT Field Width is Zero

MP Missing Period in FORMAT

FW FORMAT Pield Width is Too Small

IT 1/0 Transmission Error

ML Missing Left Parenthesis in FORMAT

DZ Division by Zero, REAL or INTEGER

LG Illegal Argument to LOG Function
(Negative or Zero)

SQ Illegal Argument to SQRT Function (Negative)

DT Data Type Does Not Agree With FORMAT
Specification

EF EOF Encountered on READ

R EREEENE) miv

MICROSOFT
EORTRAN=80

version 3.2

reference manual

©Microsof®, 1977, 1978 e

. MICROSOFT FORTRAN-80

- _Reference Manual
Contents

Section | Page
1 IntroduCtion) L) [] L] [] [. 3 3 6
2 Fortran Program FOrm o« « ¢ « o ¢ ¢ ¢ = ° ° ° 7
2.1 Fortran Character Set .« « ¢ ¢ * = ° ° ° 7

2. 1 . 1 Letters L [] [] L] . L] . [L] L[] L] . L) 7

2-1-2 Dlgits e & © o o e ®» o o & o o ° 7

2.1.3 Alphanumerics . « ¢ « o o ¢ ¢ ° 8

2.1.4 Special Characters =« =« =« ¢ ° ° ° 8

2 [] 2 FORTRAN Line FQmat L] L] . [L * L] e L] . 9

2.3 sStatementsS ¢« o o o o o s o 0 e ® o o e ® 13

3 Data Representation/Storage Format . « « - « 14
3.1 Data names and types . . o« ¢ s o o o o ¢ 14

3. 1 . 1 Nme' - L] L] L] . L] L L L 3 . L2 * [] L[] 14

- 3 . 1 . 2 T‘!Pes [.] L] [] L] . . . L] * L] [. 1 4
3.2 Constants .« ¢ o o o o o o & o o 0 0 o0 15

3. 3 varilblﬁs L] L] . [] [] [) L] - . L] ° [] L] [] L] 19

3.4 Arrays and Array Elements . .« o o o o - 20

3. 5 subscripts L[] L] * . L] L] L] L L] L] L] L] L] L] L] 20

3.6 Data Storage Allocation .+ « ¢ v o o o o 21

‘ FORTRAN EXPKCSSiOﬂS]] - . * " . . 3 . L] . - 25
4.1 Arithmetic EXpressions « « o« o o o o ¢ ¢ 25

4.2 Expression Evaluation . . ¢ o o ¢ o o ¢ 26

4.3 Logical EXpressions . o o e o ¢ ¢ ¢ * ° 27

4.3.1 Relational Expressions . . .« . - 28

4.3.2 Logical OperatOors « s o o+ o o =+ ° 28

4.4 Hollerith, Literal, and Hexadecimal
Constants in Expressions . .« s« ¢ ¢ © ¢ ¢ 3

5 Replacement Statements . . ¢ ¢ ¢ ¢ ° ° ° ° . 32

| 6 Specification Statements . I

%i 6.1 Specification Statements R X
{ 6.2 Array Declarators . « s » o o o o ¢ © ° 34

e 6.3 Type Statements .« o « o o o o o ¢ ° ° " 35
""" ’ 6.4 EXTERNAL Statements . « o o o o o ¢ ¢ 37
6.5 DIMENSION Statements . . o o o « o * *° ° 37

6.6
6.7

6.8 DATA Initialization Statement

FORTRAN Control Statements . .

7.1

N
T
wN

WNNNNNNN
e o o 8 o o o
vy NN NN

COMMON Statements « « o« o
EQUIVALENCE Statements . .

GOTO Statements « o« o o o
7.1.1 Unconditional GOTO
7.1.2 Computed GOTO . .
7.1.3 Assigned GOTO
ASSIGN Statement . .
IF Statement . o o o
7.3.1 Arithmecic I
7.3.2 Logical IF .
DO Statement . « o«
CONTINUE Statement
STOP Statement .
PAUSE Statement .
CALL Statement .
RETURN Statemant
END Statement . .

e ¢ & o & o o ¢

e o ® o e o s @ e o L] *

e 6 ¢ 0 @ & & ¢ o & & o

L] L] e o ¢ @ [] L [] L L] L] [] L .

Input/output e ® & o & ® o o s o

8.1

a0
o o
w8

@ 0
e o o
o UV

8.7

Formatted READ/WRITE .
8.1.1 Formatted READ . »
8.1.2 Pormatted WRITE .
Unformatted READ/WRITE .

Disk File I/0 . « «

8.3.1 Random Disk I/O .
8.3.2 OPEN Subroutine .
Auxiliary I/O Statements .
ENCODE/DECODE ¢« o ¢ o o o o
Input/Output List Specificat
8.6.1 List Item Types . .
8.6.2 Special Notes on List
Specifications . . .
ORMAT Statements . « « o o
Field Descriptors .
Numeric Conversions
Hollerith Conversions
‘Logical Conversions
X Descriptor « « o o
P Descriptor « ¢ « o

o 00 0o oo 0 G @ "9

of FORMAT Statements

L] L]

2 Field Separators

¢ 6 0 8 ® ¢ @& ® O & 0o o & o [}

L]
.
L
L]

1
2
3
4
S
6
7 Special Control Features
4
:
8
9
1

io
*

e & o @

.’..,.‘I

s 8 [] * L d - L L]

7.1 Repeat Specifications
7.

s o6 ®© » ¢ o o o

L

FORMAT Control, List Specift
and Record Demarcation . « .« « o ¥ ¢
FORMAT Carriage Control
0 FORMAT Specifications in Arrays . -

.

.O._l'.ll.‘.....

* L] ® L] [] . L] ® L] L] L] L] L] L d L] *

e o L] L] L L] L] L] L] L] L[]

L] . L] L] L] L] L] L]

ications,

-

o ® © 6 9 8 ® & © © & o ©° & o L]

e o L] L L] L L] L] [] L] L

L] * L L] L [) [] ®

e &8 6 ¢ & © 6 & & 8 © o & & 0 L]

[] L] E] [2 L] - L] L] * * L

L

»® L L] . L] [] L] L] L] L] . L] L] L [] L]

L] L] L) L L] L] [] L

L] L] L] . L] [] [] L] L] [] L] L] ® ® L] [)

[] L] L] L] . L] . @ L] [] L]

L] - 3’ * L] * * .

- 9 Functions and Subprograms ., . . « « « s o o o o ¢ 82
9.1 PROGRAM Statement o« o o o o o o « o« o 83
9.2 Statement Functions . o« o o ¢ o o o ¢ o o ¢ ¢ 83
9.3 Library Functions « o o o ¢ o o o o ¢ g4
9.4 Function Subprograms . . « s o o o ¢ o o o 88
9.5 Construction of Function Subprograms 88
9.6 Referencing a Function Subprogram« « - 90
9.7 Subroutine Subprograms . « o o o o s o o o o 91
9.8 ‘Construction of Subroutine Subprograms ., . . 91
9.9 Referencing a Subroutine Subprogram 92
9.10 Return From Function and Subroutine

SUDPIOGIaMS o o o o o o o o s o o & o o ¢ © ° 93
9.11 Processing Arrays in Subprograms . . ¢ « - - 94
9.12 BLOCK DATA Subroutine . « « « ¢ + o o o o © 96

APPENDIX A- Language Extensions and Restrictions . 98
APPENDIX B- I/0 Interface . . « ¢ o.c o o o o =« = 100
APPENDIX C~- Subprogram Linkages . « « « « o =« - = 102
APPENDIX D= ASCII Character Codes . . « « « + o = 104

- APPENDIX E- FORTRAN-80 Library Subroutines 105

FORTRAN-80 Reference Manual Page 6

SECTION 1

INTRODUCTION

FORTRAN is a universal, problem oriented programming

language designed to simplify the preparation and check-out

of computer programs. The name of the language = FORTRAN =
is an acronym for FORmula TRANslator.

The syntactical rules for using the language are rigorous
and require the programmer to define fully the
characteristics of a problem in a geries of precise
statements. These statements, called the source program,
are translated by a systenm program called the FORTRAN
processor into an cbject program in the machine language of
the computer oOn which the program is to be executed.

This manual defines the FORTRAN source language for the 8080
and Z-80 microcomputers. This language includes the
American National standard FORTRAN language as described 1in
ANSI document X3.9-1966, approved on March 7, 1966, plus 2
nunber of language extensions and some restrictions. These
language extensions and restrictions are described in the
text of this document and are listed in Appendix A.

NOTE

This FORTRAN differs from the
standard in that it does not
include the COMPLEX data type.

Examples are included throughout the manual to illustrate
the construction and use of the language elements. The
programmer should be famillar with all aspects of the
language to take full advantage of its capabilities.

Section 2 describes the form and components of an 8080
FORTRAN source program. Sections 3 and 4 define data types
and their expressional relationships. Sections 5 through 9
describe the proper construction and usage of the various
stata2ment classes.

)

-

il

~

[

FORTRAN-80 Reference Manual Page 7

. SECTION 2
-~
FORTRAN PROGRAM FORM
8080 FORTRAN source programs consist of one program unit
called the Main program and any number of program units
. called subprograms. A discussion of subprogram types and
methods of writing and using them is in Section 9 of this
manual.
Programs and program units are constructed of an ordered set
of statements which precisely describe procedures for
solving problems and which also define information to be
used by the FORTRAN processor during compilation of the
object program. Each statement is written using the FORTRAN
character set and following a prescribed line format.
2.1 FORTRAN CHARACTER SET
To simplify reference and explanation, the FORTRAN
character set is divided into four subsets and a
name is given to each.
[)
. 2.1.1 LETTERS

A,B,c,D,E.F'G'H'I'J'K,L’M,N,O,P'Q'R'S'T'U
V,W,X,Y,2,%

NOTE

No distinction is made between upper and
jower case letters. However, for clarity
and legibility, exclusive use of upper case
letters is recommended.

2.1.2 DIGITS
01112130‘150607l809

NOTE

Strings of digits representing numeric
- guantities are normally interpreted 2s
- decimal numbers. However, in certain
= statements, the interpretation is in the

FORTRAN-80 Reference Manual Page 8

2.1.3

2.1.4

Hexadecimal number system in which case the
letters A, B, C, D, E, F may also be used
as Hexadecimal digits. Hexadecimal usage
is defined in the descriptions of
statements in which such notation is
allowed.

ALPHANUMERICS

A sub-set of characters made up of all letters and
all digits.

s v w2l + 0

SPECIAL CHARICTERS

Blank

Equality Sign
Plus Sign

Minus Sign
Asterisk

Slash

Left Parenthesis
Right Parenthesis
Comma

Decimal Point

NOTES:

1.

FORTRAN program lines consist of 80 character
positions or columns, numbered 1 through 80.
They are divided into four fields.

The following special characters are classified
as Arithmetic Operators and are significant in
the unambiguous statement of arithmetic
expressions.

Addition or Positive Value
Subtraction or Negative VAlue
Multiplication
Division

* Exponentiation

s) +

The other special characters have specific
application in the syntactical expression of
the FORTRAN language and in the construction of
FORTRAN statements. -

FORTRAN-80 Reference Manual Page 9

4. Any printable character may appear in a
it Hollerith or Literal field.

2.2 FORTRAN LINE FORMAT

The sample FORTRAN coding form (Figure 2.1) shows
the format of FORTRAN program lines. The lines of
the form consist of 80 character positions or
columns, numbered 1 through 80, and are divided
into four fields.

1. Statement Label (or Number) field- Columns 1
through 5 (See definition of statement labels).

2. Continuation character field-
Column 6

3., Statement field-
Columns 7 through 72

4. Indentification field-
Columns 73 through 80

The identification field is available for any
- purpose the FORTRAN programmer may desire and is
ignored by the FORTRAN processor.

The lines of a FORTRAN statement are placed in
Columns 1 through 72 formatted according to line
types. The four line types, their definitions, and
column formats are:

1. Comment line -- used for source program
annotation at the convenience cof the
programmer.

1. Column 1 contains the letter C.

4&9 2. Columns 2 - 72 are used in any desired
/k\ format to express the comment Or they may
be left blank. :

‘3. A comment line may be followed only by an
initial 1line, an END line, or another
comment line.

4. Comment lines have no effect on the object
= program and are ignored by the FORTRAN
{ processor except for display purposes 1in
= the listing of the program.

. Pl
A < @y Iyl whe) SqwewIrer Buiyrund 1oy spqoyre-o 11 (1 §OR *11301%) u_‘ pr3 1“.~ﬂ16.<|.
b T st oo e 8 efo]ls v € zL
1.40;.-....2.!, .uﬁﬂzann;::;2:2:8::::.-?2!::sx.pz.nax:::n::::z:..s : . __ _ :
] . \ w ' . ¢ . X , - ; o . — N B
: 4 ' . : 1 . t v
. . . ; i |
" — [] m :
—_ —— [} o |)) _
v X LI
T EEEEENEEERREEE R _ B
[_ [] ~ _ ~ \] 1 " i : , -
. }) L — : i - 4
o + L - LI T |] T — ~ .) ‘
. _ : il bty | _
Iy i 1 : 1 11 - T — ” , —
- Pl | TR EEANNERE N L . , |
[B (I N IO B N - -
= - [| . ' ' i | ! 1
- * I [} . B
T T T - o] |
A_) i : i ! M m i ' _ | m
. . N 1 :
e e et et . e i e S y ._ Fo
r)
A . T T — J m.
T “ HRERRER :
o R T I OO T I . ., — =
: 1 L I I ' .] . 3
: i : } 1 .
e ! il _ 2
A TR NE 1A THIENIEE
— . _ — : _ m . ! ! : t * ‘ ' 1 o«
. b n . , + — : | — o
H H [_ . [. : Ly ~ “ | o
N A i | - L. + — ‘ , “ : .

B ' : _ N " [} ! — ” H _
| . ! -
I~] i
» I | . | 'U
P |] _ L
L} 1 ﬂ..
: _ — _ P — ' v 1 —]

] e) [H) — — R ﬂl n ' n N
| [} ! \ Vo — B \ ; Y ' t -t
h L] . ' — i ‘ . N
: . T — | ' . [| ' . '
] . Vo o
[o ‘ i] i ~ —— e e N
" | . _ .
-t gy .
! - — T
L} .
LI — . |
i | 1 _ A . “ 1
SN RN REE : | ! « || . “ j | i1
| . | u h — “ — s (])]s ¢ (€ i
A — H | i ’ :::a:a:::::::z:._:..:::::!. . =
wa.x o: .o—.‘ 700 0% 65 T o0 My ve v6 €% U5 v OF v @ uv B0 To o Cr (v 1y Ov oC B 4C W SL R S G _.“..ﬂn.ﬂa: ,"
\ INIWILYAS NYUIO4 2 |
, .
. — ahev.eva kg
HWed . .
e Q40 st st — —— e - - et
” Ot N N v
WLV4D . _ .
! - WAl
1 waey Buipe) NVULHOJ
X

FORTRAN-80 Reference Manual Page 11

END

2.
3.

S.

Examgle:
C COMMENT LINES ARE INDICATED BY THE
C CHARACTER C IN COLUMN 1,

C THESE ARE COMMENT LINES

line == the last line of a program unit.
Columns 1-5 may contain a statement label.
Column 6 must contain a 2erIo or blank.

Columns 7-72 contain one of the characters
E, N or D, in that order, preceded by,
separated by or followed by blank
characters.

Each FORTRAN program unit must have an END
line as its last 1line to inform the
Processor that it is at the physical end of
the program unit.

An END line may follow any other type line.
Example:

END

Initial Line == the first or only line of each
statement.

1.

2.
3.

4.

Columns 1-5 may contain a statement label
to identify the statement.

Column 6 must contain a zero oOr blank.

Columns 7-72 contain all or part of the
statement.

An initial line may'begin anywhere within
the statement field.

Example:

C THE STATEMENT BELOW CONSISTS
c OF AN INITIAL LINE
C

A= .S5*SQRT(3-2.*C)

RN

oy o

FORTRAN-80 Reference Manual Page 12 —

4. Continuation Line -- used when additional lines f
of coding are required to complete a statement =
originating with an initial line. :

1. Columns 1-5 are ignored, unless Column 1
contains a C.

2. If Column 1 contains a c, it is a comment
line.

3, Column 6 must contain & character other
than zero or blank.

E—

4. Columns 7-72 contain the continuation of
the statement.

5. There may be as many continuation lines as
needed to complete the statement.

Example:

C THE STATEMENTS BELOW ARE AN INITIAL LINE
c AND 2 CONTINUATION LINES

63 BETA(1,2) =
1 AGBAR"7-(BETA(Z,Z)-ASBAR'SO
2 - +SQRT (BETA(2,1)))

A statement label may be placed in cclumns 1=5 of a
FORTRAN statement initial line and is used for
reference purposes in other statements.

The fcllowing considerations govern the use of
statement labels:

1. The label is an integer from 1 to 99999.

2. The numeric value of the label, leading zercs
and blanks are not significant.

3. A label must be unique within a program unit.

4. A label on a continuation line is ignored Dby
the FORTRAN Processor.

FORTRAN-80 Reference Manual Page 13

Examgle:

C EXAMPLES OF STATEMENT LABELS
C
1
1 01
99999
763

2.3 STATEMENTS

Individual statements deal with specific aspects of
a procedure described in a program unit and are
classified as either executable or non-executable.

Executable statements specify actions and cause the
FORTRAN Processor to generate object program
instructions. There are three types of executable
statements:

1. Replacement statements.
2. Control statements.

v 3. Input/Output statements.

Non-executable statements describe to the processor
the nature and arrangement of data and provide
information about input/output formats and data
initialization to the object program during program
loading and execution. There are five types of
non-executable statements:

1. Specification statements.
2. DATA Initialization statements.
3. FORMAT statements. i
4. 'FUNCTION defining statements.
S. Subprogram statements. |

' The proper usage and construction of the v;rious
types of statements are gescribed in Sections 5
through 9. r

I

" wmee mwoves - wm

FORTRAN-80 Reference Manual Page 14

SECTION 3

DATA REPRESENTATION / STORAGE FORMAT

The FORTRAN Language prescribes a definitive method for
identifying data used in FORTRAN programs by name and type.

3.1.1

DATA NAMES AND TYPES

NAMES

1. Constant = An explicitly stated datum.
2. Variable - A symbolically identified datum.

3. Array - An ordered set of data in 1, 2 or 3
dimensions.

4. Array Element - One member of the set of data
of an array.

TYPES

Integer ==~ Precise representation of integral
numbers (positive, negative or zero) having
precision to 5 digits in the range =-32768 to +32767
inclusive (=2**15 to 2**15-1).

Real -- Approximations of real numbers (positive,
negative or zero) represented in computer storage
in 4-byte, floating-point form. Real data are
precise to 7+ significant digits and their
magnitude may lie between the approximate limits of
10**-38 and 10**38 (2**-127 and 2**127).

Double Precision =-- Approximations of real numbers
(positive, negative or zero) represented in
computer storage in 8-byte, floating-point form.
Double Precision data are precise to 16+
significant digits in the same magnitude range as
real data.

Logical =-- One byte representations of the truth
values "TRUE"™ or “"FALSE" with "FALSE defined to
have an internal representation of zero. The
constant .TRUE. has the value -1, however any
non-zero value will be treated as .TRUE. " in a
Logical IF statement. In addition, Logical types
may be used as one byte signed integers in the

FORTRAN-B80 Reference Manual

range =128 to +127, inclusive.

Page 15

5. Hollerith == A string of any number of characters
from the computer's character set. All characters
including blanks are significant. Hollerith data
require one byte for storage of each character in

the string.

3.2 CONSTANTS

FORTRAN constants are identified explicitly by
stating their actual value. The plus (+) character

need not precede positive valued constants.

Formats for writing constants are shown in

3-1.

Table

FORTRAN-80 Reference Manual Page 16

-~ ==

Table 3-1., CONSTANT FORMATS

TYPE FORMATS AND RULES OF USE EXAMPLES
INTEGER 1. 1 to 5 decimal digits -763
interpreted as a deci- 1
mal number. +00672
2. A preceding plus (+) or -32768
minus (=) sign is op- +32767
tional.

3. No decimal point (.) or
comma (,) is allowed.

4. Value range: =32768
through +32767 (.i.e.,
=2**15 through 2**15-1).

REAL 1. A decimal number with 345.
precision to 7 digits -,345678
and represented in one +345.678
of the following forms: +.3E3 -
-73E4

a, +or ~-.f + or -i.f
b. + or =-i.E+ or =-e’

+ or -.fE+ or -e

+ or -1.fE+ or -e

where i, £, and e are
each strings represent-
ing integer, fraction,
and exponent respective-
ly.

2. Plus (+) and minus (=)
characters are optional.

3. In the form shown in 1b
above, if r represents any
of the forms preceding
E+ or -e (i.e., TE+ O -e),
the value of the constant
is interpreted as T times
10**e, where -38<=e<=38,

4, If the constant preceding
E+ or -e contains more
significant digits than

FORTRAN-80 Reference Manual Page

DOUBLE
PRECISION

LOGICAL

LITERAL

HEXADECIMAL

the precision for real
data allows, truncation
occurs, and only the

most significant digits
in the range will be rep-
resented.

A decimal number with +345.678
precision to 16 digits. All +.3D3
formats and rules are identi- -73D4
cal to those for REAL con-

stants, except D is used in

place of E. Note that a real

constant is assumed single pre-

cision unless it contains a

*D" exponent.

.TRUE. generates a non-zero .TRUE.
byte (hexadecimal FF) and .FALSE.
.FALSE. generates a byte in

which all bits are 0.

If logical values are

used as one-byte integers, the
rules for use are the same as
for type INTEGER, except that
the range allowed is =128 to
+127, inclusive.

In the literal form, any
number of characters may be
enclosed by single guotation
marks. The form is as follows:

'X1X2X3...Xn'

where each Xi is any charac-
ter other than '. Two
quotation marks in succession
may be used to represent the
quotation mark character
within the string, i.e.,

if X2 is to be the quotation
mark character, the string
appears as the following:

'X1''X3...Xn' N
1. The letter Z or X z2'12"

followed by a single guote, .-
up to 4 hexadecimal o X'ABIF'

17

FORTRAN-80 Reference Manual Page 18 —
digits (0-9 and A-F) and a Z'FFFF' fe
single quote is recognized :
as a hexadecimal value. X'1f'

2. A hexadecimal constant is
right justified in its storage
value.

—

FORTRAN-80 Reference Manual Page 19

({ 3.3 VARIABLES

variable data are identified in FORTRAN statements
by symbolic names. The names are unigue gstrings of
from 1 to 6 alphanumeric characters of which the

first is a letter. —
ool
NOTE
System variable names and runtime

subprogram names are distinguished from
other variable names in that they begin
with the dollar sign character ($). It is
therefore strongly recommended that in
order to avoid conflicts, symbolic names in
FORTRAN source programs begin with some
letter other than "$".

Exggéles:
1S, TBAR, B23, ARRAY, XFM79, MAX, Al1$C

Vvariable data are classified into four types:
INTEGER, REAL, DOUBLE PRECISION and LOGICAL. The
specification of type is accomplished in one of the
following ways:

1. Implicit typing in which the first letter of
the symbolic name specifies Integer Or Real
type. Unless explicitly typed (2., below),
symbolic names beginning with I, J, K, L, Mor
N represent Integer variables, and symbolic
names beginning with letters other than I, J,
K, L, M or N represent Real variables.

Integer Variables

ITEM

J1

MODE

K123 ;
N2 i

FORTRAN-80 Reference Manual : Page 20

Real Variables

BETA
H2
IAP
2MAT
XID

2. Variables may be typed explicitly. That 1is,
they may be given 2 par+icular type without
raference to the first letters of their names.
Variablas may be explicicly tyzed as INTEGER,
REAL, DOUBLE PRECISION or LOGICAL. The
specific statements used in explicitly typing
data are described in Secticn 6.

Variable data receive’ their numeric vaiue assicnments during
program execution or, initialiy, 2xn a DATA statement
(Section 6).

Hollerith or Literal data may be assigned to any type

variable. Sub-paragraph 3.6 <ccntains a giscussion of
Hollerith data storage.

3.4 ARRAYS AND ARRAY ELEMENTS

An array is an ordered set of data characterized by
the property cf dimension. An array may have 1, 2
or 3 dimensions and is identified ard typed by a
sympolic name in the same m2nner as a variable
except that an array name must De =C declar=d by an
"array declarator." Complete discussions of the
arrav cdeclarators appear in Section 6 of this

manuzal. An array deciara=or also indicates the
dimensicnality and size of the array. kn array

element is crne member of the 22%ta set that makes up
an array. xefarence tc an aTtriy/ element in a
FORTRAN statement iz made by appanding 2 subscript
to the array nare, The term artay element 1is
synonyrious with the tevm subscripted variable used

in some FORTRAN texts and reference manuals.
An initial value may bCte ass.gnred to any array
t

elament by a DATA statement Or its value may be
derived and defined during program execution.

3.5 SUBSCRIPTS

A subscript <foliows an array name <20 uniguely

FORTRAN-80 Reference Manual Page 21

SN identify an array element. In use, a subscript in

{ a FORTRAN statement takes on the same

: representational meaning as a gsubscript in familiar
algebraic notation.

Rules that govern the use of subscripts are as

follows:

1. A subscript contains 1, 2 or 3 subscript
expressions (see 4 below) enclosed in
parentheses.

2. If there are two or three subscript expressions
within the parentheses, they must be separated
by commas.

3. The number of subscript expressions must be the
gsame as the specified dimensionality of the
Array Declarator except in EQUIVALENCE
statements (Section 6).

4. A subscript expression is written in one of the
following forms:

K C*V V-K
‘ V C*V+K C*V-K
e V+K

where C and K are integer constants and V is an
integer variable name (see Section 4 for a
discussion of expression evaluation).

§, Subscripts themselves may not be subscriptecd.

Examples:
X(2*J3=-3,7) A(I1,3,K) = I(20) c(L=-2) Y (I)
3.6 DATA STORAGE ALLOCATION

Allocation of storage for FORTRAN data is made in
numbers of storage units, A storage unit is the
memory space reqguired to store one real data value
(4 bytes).

Table 3-2 defines the word formats of the three
data types.

Hexadecimal data may be associated (via a DATA
statement) with any type data. Its storacge
allocation is the same as the associated datum.

Hollerith or literal data may .be associadted. with
= any data type by use of DATA initializaton

FORTRAN-80 Reference Manual Page 22

statements (Section 6). I

Up to eight Hollerith characters may be associated
with Double Precision type storage, up to four with
Real, up to two with Integer and one with Logical
type storage.

FORTRAN-80 Reference Manual | Page 23

TYPE

INTEGER

LOGICAL

TABLE 3-2. STORAGE ALLOCATION BY DATA TYPES

ALLOCATION
2 bytes/ 1/2 storage unit
S Binary Value

Negative numbers are the 2's complement of
positive representations.

1 byte/ 1/4 storage unit
zero (false) or non-zero (true)

A non-zero valued byte indicates true (the
logical constant .TRUE. is represented by
the hexadecimal value FF). A zero valued
byte indicates false. .

When used as an arithmetic value, a Logical
datum is treated as an Integer in the range
-128 to +127.

4 bytes/ 1 storage unit

Characteristic [Mantissa
Mantissa (continued)

The first byte is the characteristic
expressed in excess 200 (octal) notation;
i.e., a value of 200 (octal) corresponds to a
binary exponent of 0. values less than 200
(octal) correspend to negative exponents, and
values greater than 200 correspond to
positive exponents. By definition, if the
characteristic is zero, the entire number 1is
zero.

The next three bytes constitute the mantissa.
The mantissa is always normalized such that
the high order bit is one, eliminating the
need to actually save that bit. The high bit
is used instead to indicate the sign of the
number. A one indicates a negative number,
and zero indicates a positive number. The
mantissa is assumed to be a binary fraction
whose binary point is to the left of the
mantissa.

FORTRAN-80 Reference Manual

DOUBLE
PRECISION

Page 24

8 bytes/ 2 storage units

The internal form of Double Precision data is
identical with that of Real data except
Double Precision uses 4 extra bytes for

matissa.

FORTRAN-80 Reference Manual Page 25

SECTION 4

FORTRAN EXPRESSIONS

A FORTRAN expression is composed of a single operand or a
string of operands connected by operators. T™wWO expression
types ~--Arithmetic and Logical-- are provided by FORTRAN.
The operands, operators and rules of use for both types are
described in the following paragraphs.

4.1 ARITHMETIC EXPRESSIONS

The following rules define all permissible
arithmetic expression forms:

i. A constant, variable name, array element
reference or FUNCTION reference (Section 9)
standing alone is an expression.

§xamcles:
S(I) JOBNO 217 17.26 SQRT (A+B)

2. If E is an expression whose first character is
. not an operator, then <+E and -E are called
signed expressions.

. Examples
=S +JOBNO =217 +17.26 =SQRT (A+B)

3. I1f E is an expression, then (E) means the
quantity resulting when E is evaluated.

Examples:
(=2) = (JOBNO) -(X+1) (A-SQRT (A+B))

4. If E is an unsigned expréssion and F 1is any
expression, then: F+E, F~E, F*E, F/E and F**E
are all expressions.

Examples:

-(B(I,J)+SQRT(A+B(K,L)))
1.7E=-2**(X+5.0)
=(B(I+3,3*J+5)+A)

FORTRAN-80 Reference Manual Page 26

4.2

S.

6.

An evaluated expression may be Integer, Real,
Double Precision, or Logical. The type is
determined by the data types of the elements of
the expression. If the elements of the
expression are not all of the same type, the
type of the expression is determined by the
element having the highest type. The type
hierarchy (highest to lowest) is as follows:
DOUBLE PRECISION, REAL, INTEGER, LOGICAL.

Expressions may contain nested parenthesized
elements as in the following:

A* (Z=((Y+X)/T))**J

where Y+X is the innermost element, (Y+X)/T 1is
the next innermost, 2-((Y+X)/T) the next. In
such expressions, care should be taken to see
that the number of left parentheses and the
number of right parentheses are equal.

EXPRESSION EVALUATION

Arithmetic expressions are evaluated according to
the following rules:

1.

parenthesized expression elements are evaluated
first. 1f parenthesized elements are nested,
the innermost elements are evaluated, then the
next innermost until the entire expression has
been evaluated.

Within parentheses and/or wherever parentheses
do not govern the order or evaluation, the
hierarchy of operations in order of precedence
is as follows:

a. FUNCTION evaluation
b. Exponentiation

c. Multiplication and Division
d. Addition and Subtraction

The expression
A* (Z=- ((Y+R)/T)) **J+VAL

is evaluated in the following seguence:

ot :
s

(FORTRAN-80 Reference Manual Page 27

! Y+R = el
bt (e1)/T = e2
Z-e2 = el
e3**J = g4
A*ed = e5
e5+VAL = @6

3. The expression X**Y**Z is not allowed. It
gshould be written as follows:

(X*ey)ee2 or X** (Y**Z)
4. Use of an array element reference requires the
evaluation of its subscript. Subscript

- expressions are evaluated under the same rules
as other expressions.

4.3 LOGICAL EXPRESSIONS

A Logical Expression may be any of the following:

1. A single lLogical Constant (i.e., .TRUE. or
JFALSE.), a Logical variable, Logical Array
Element or Logical FUNCTION reference (see
FUNCTION, Section 9).

2. Two arithmetic expressions separated by a
relational operator (i.e., a relational
expression).

3. Logical operators acting upon logical
constants, logical wvariables, logical array
elements, logical FUNCTIONS, relaticnal

expressions or other logical expressions.

L e ————— i = e —— m———

FORTRAN-80 Reference Manual Page 28

4.3.1

4.3.2

The value of a logical expression is always either
.TRUE. or .FALSE.

RELATIONAL EXPRESSIONS

The general form of a relational expression is as
follows:

el r @2
where el and e2 are arithmetic expressions and r is

a relational operator. The six relational
operators are as follows:

.LT. Less Than

.LE. Less than or equal to
.EQ. Equal to

.NE. Not equal to

.GT. Greatsr than .

.GE. Greater than or equal .to

The value of the relational expression is .TRUE.
if the condition defined by the operator is met.
Otherwise, the value is .FALSE.

Examples:

A.EQ.B .
(A"J).GT.(ZAP*(RHO'TAU-ALPH))

LOGICAL OPERATORS

Table 4-1 lists the logical operations. U and V
denote logical expressions.

FORTRAN-80 Reference Manual Page 29

Table 4-1. Logical Operations

o

«NOT.U The value of this expression is the
logical complement of U (i.e., 1
bits become 0 and 0 bits become 1).

U.AND.V The value of this expression is the
logical product of U and V (i.e.,
there is a 1 bit in the result only
where the corresponding bits in both
U and V are 1.

U.OR.V The value of this expression is the
logical sum of U and V (i.e., there
is a 1 in the Jsesult if the
corresponding bit in U or Vv is ' or
if the corresponding bits in both U
and V are 1.

U.XOR.V The value of this expression is the
exclusive OR of U and V (i.e., there
ig a one in the result if the
corresponding bits in U and V are 1
and 0 or 0 and 1 respectively.

Examgles:
If U = 01101100 and V = 11001001 , then

LNOT.U = 10010011
U.AND.V = 01001000
U.OR.V = 11101101
U.XOR.V = 1010010

FORTRAN-80 Reference Manual Page 30

The following are additional considerations for
construction of Logical expressions:

1. Any Logical expression may be enclosed in
parentheses. However, a Logical expression to
which the .NOT. operator is applied must be

enclosed in parentheses if it contains two Or
more elements. '

2. In the hierarchy of operations, parentheses may
be used to specify the ordering of the
expression evaluation. Within parentheses, and
where parentheses do not dictate evaluation
order, the order is understocd to be as
follows:

a. FUNCTION Reference

b. Exponentiation (**)

c. Multiplication and pivision (* and /)
d. Addition and Subtraction (+ and -)

e. .LT., .LE., .EQ., .NE., .GT., .GE.

£. WNOT.

g. Omn.

h. .OR., .XOR.

Examples:
The expression

X .AND. Y .OR. B(3,2) .GT. Z
is evaluated as

el = B(3,2).GT.2

e2 = X ,AND. ¥

el = e2 .OR. el
The expression

X .AND. (Y .OR. B(3,2) .GT. 2)
is evaluatel as

el = B(3,2) .GT. 2

e2 = Y OR, el
el = X . AND. e2

3. It is invalid to have two contiguous logical
operators except when the second operator is
.NOT.

o

FORTRAN-80 Reference Manual Page 31

That is,
-
«AND. .NOT.
and
«OR. .NOT.
are permitted.
Example:
A.AND..NOT.B is permitted
A.AND..OR.B is not permitted
4.4 HOLLERITH, LITERAL, AND HEXADECIMAL CONSTANTS IN
EXPRESSIONS
HBollerith, Literal, and Hexadecimal constants are
allowed in expressions in place of Integer
constants. These special constants always evaluate
to an Integer value and are therefore limited to 2
length of two bytes. The only exceptions to this
- are:
(_“)
¢

1. Llong Hollerith or Literal constants may be used
as subprogram parameters.

2. Hollerith, Literal, or Hexadecimal constants
may be up to four bytes long in DATA statements
when associated with Real variables, or up to
eight bytes long when associated with Double
Precision variables.

FORTRAN-80 Reference Manual Page 32

SECTION 5

REPLACEMENT STATEMENTS

Replacement statements define computations and are used
similarly to equations in normal mathematical notation.
They are of the following form:

v = e

where v is any variable or array element and e is an
expression.

FOR??AN semantics defines the equality sign (=) as meaning
to be replaced by rather than the normal is eguivalent to.
Thus; e objecEx program instructions generated by a
replacement statement will, when executed, evaluate the
expression on the right of the equality sign and place that
result in the storage space allocated to the variable or
array element on the left of the equality sign.

The following conditions apply to replacement statements:

1. Both v and the equality sign must appear On the
same line. This holds even when the statement is
part of a logical IF statement (section 7).

Example:
C IN A REPLACEMENT STATEMENT THE 's='
C MUST BE IN THE INITIAL LINE.
AL513) -
1 B(7,2) + SIN(C)

The line containing v= must be the initial line of
the statement unless the statement is part of a
logical 1IF statement. In that case the v= must
occur no later than the end of the first line after
the end of the IF.

2. If the data types of the variable, v, and the
expression, e, are different, then the value
determined by the expression will be converted, if
possible, to conform to the typing of the variable.
Table 5-1 shows which type expressions may be
equated to which type of variable. Y indicates a
valid replacement and N indicates an invalid
replacement. Footnotes to Y indicate conversion
considerations.

FORTRAN-80 Reference Manual Page 33

, Table 5-1. Replacement By Type
‘ ewr
Expression Types (e)

Variable
Types Integer Real Logical Double
Integer Y -Ya Yb Ya
Real Ye Y Yc Ye
Logical Yd Ya Y Ya
Double Yc Y Yc Y

a. The Real expression value is converted to Integer,
truncated if necessary to conform to the range of

Integer data.
b. The sign is extended through the second byte.
c. The variable is assigned the Real approximation of

the Integer value of the expression.
d. The variable is assigned the truncated value cf the

- Integer expression (the low=-order byte is used,

regardless of sign).
e. The variable is assigned the rounded value of the

Real expression.

[

FORTRAN-80 Reference Manual Page 34

SECTION 6

SPECIFICATION STATEMENTS

Specification statements are non-executable, non-generative
statements which define data types of variables and arrays,
specify array dimensionality and size, allocate data storage
or otherwise supply determinative information to the FORTRAN
processor. DATA intialization statements are
non-executable, but generate object program data and
establish initial values for variable data.

6.1 SPECIFICATION STATEMENTS

There are six kinds of specification statements.
Theyare as follows:

Type, EXTERNAL, and DIMENSION statements
COMMON statements

EQUIVALENCE statements

DATA initialization statements

All specification statements are. grouped at the
beginning of a program unit and must be ordered as
they appear above. Specification statements may be
preceded only by a FUNCTION, SUBROUTINE, PROGRAM or
BLOCK DATA statement. All specification statements
must precede statement functions and the first
executable statement.

6.2 ARRAY DECLARATORS
Three kinds of specification statements may specify
array declarators. These statements are the
following:

Type statements
DIMENSION statements
COMMON statements

Of these, DIMENSION statements have the declaration
of arrays as their socle function. The other two
serve dual purposes. These statements are defined
in subparagraphs 6.3, 6.5 and 6.6.

Array declarators are used to specify the name,
dimensionality and sizes of arrays. An array may

be declared only once in a program unit.

An array declarator has one of the following forms:

——r

Ly

~

FORTRAN-80 Reference Manual Page 35

ui (k)
ui (k1,k2)
ui (x1,k2,k3)

where ui is the namg of the array, called the
declarator name, and the k's are integer constants.

Array storage allocation is established upon
appearance of the array declarator. Such storage
is allocated linearly by the FORTRAN processor
where the order of ascendancy is determined by the
first subscript varying most rapidly and the last
subscript varying least rapidly.

For example, if the array declarator AMAT (3,2,2)
appears, storage is allocated for the 12 elements
in the following order:

AMAT (1,1,1), AMAT(2,1,1), AMAT(3,1,1), AMAT (

1,2,1),
AMAT (2,2,1), AMAT(3,2,1), AMAT(1,1,2), AMAT (2,1,2),
AMAT£3,"2), AMAT(1'2'2), AMAT(Z,z.Z), WT(30202)

TYPE STATEMENTS

Variable, array and FUNCTION names are
automatically typed Integer or Real by the
‘predefined' convention unless they are changed by
Type statements. For example, the type is Integer
if the first letter of an item is I, J, K, L, M or
N. Otherwise, the type is Real.

Type statements provide for overriding or
confirming the pre-defined convention by specifying
the type of an item. 1In addition, these statements
may be used to declare arrays.

Type statements have the following general form:
t vi,v2,...vn

where t represents one of the terms INTEGER,
INTEGER*1, INTEGER*2, REAL, REAL'4, REAL*8, DOUBLE
PRECISION, LOGICAL, LOGICAL*1, LOGICAL*2, or BYTE.
Each v is an array declarator or a variable, array
or FUNCTION name. The INTEGER*1, INTEGER*2Z,
REAL*4, REAL®*S, LOGICAL*1,and LOGICAL*2 types are
allowed for readability and compatibility with
other FORTRANS. BYTE, INTEGER*1, LOGICAL*1, and
LOGICAL are all equivalent; { INTEGER*2, LOGICAL*Z,
and INTEGER are eguivalent; REAL and REAL*4 are
equivalent; DOUBLE PRECISION and REAL*S are
eguivalent.

FORTRAN-80 Reference Manual Page 36

Examgle:
REAL AMAT(3,3,5),BX,IETA,KLPH

NOTE

1. AMAT and BX are redundantly typed.

2. IETA and KLPH are unconditionally
declared Real.

3. AMAT (3,3,5) is a constant array
declarator specifying an array of 45
elements.

Example:
INTEGER M1, BT, JMP(15), FL

NOTE

M1 is redundantly typed here. Typing of HT
and FL by the pre-defined convention is
overridden by their appearance in the
INTEGER statement. JMP (15) is a constant
array declarator. It redundantly types the
array elements as Integer and communicates
to the processor the storage requirements
and dimensionality of the array.

Examgle:
LOGICAL L1, TEMP

NOTE

All variables, arrays or FUNCTIONs required
to be typed Logical must appear in a
LOGICAL statement, since no starting letter
indicates these types by the default
convention. ’

FORTRAN-80 Reference Manual Page 37

'\ 6.4

6.5

6.6

EXTERNAL STATEMENTS

EXTERNAL statements have the following form:
EXTERNAL ul,u2,...,un

where each ui 4is a SUBROUTINE, BLOCK DATA or
FUNCTION name. When the name of a subprogram is
used as an argument in a subprogram reference, it
must have appeared in a preceding EXTERNAL
statement.

When a BLOCK DATA subprogram is to be included in 2
program load, its name must have appeared in an
EXTERNAL statement within the main program unit.

For example, if SUM and AFUNC are subprogram names
to be used as arguments in the subroutine SUBR, the
following statements would appear in the calling
program unit:

EXTERNAL SUM, AFUNC

CALL SUBR (SUM,AFUNC,X,Y)

DIMENSION STATEMENTS

A DIMENSION statement has the following form:
niusns:oﬁ u2,u2,u3,...,un
where each ui is an array declarator.
Example:
DIMENSION RAT(S,S),BA#(ZO)
This statement declares two étrays - the 25 element

array RAT and the 20 element array BAR.

COMMON STATEMENTS

COMMON statements are non-executable, storage
allocating statements which assign variables and
arrays to a storage area called COMMON storage and
provide the facility for various program units to
share the use of the same storage area.

- s mem e = e e s — e —— - ————————— . — " "0 % W . —— o —— - W SPU S (8 S e e - - o — ...r.

FORTRAN-80 Reference Manual Page 38 %é
gOMMON statements are expressed in the following .5%
orm: -

COMMON /Y1/A1/Y2/A2/.../¥n/An

where each Yi is a COMMON block storage name and
each Ai is a sequence of variable names, array
names or constant array declarators, separated by
commas. The elements in Ai make up the COMMON
block storage area specified by the name Yi.

any Yi 1s omitted leaving two consecutive slash
characters (//), the block of storage so indicated
is called blank COMMON, If the first block name
(Y1) is omitted, the two slashes may be omitted.

Example:
COMMON /AREA/A,B,C/BDATA/X.Y,Z,
X FL,ZAP(30)

In this example, two blocks of COMMON- storage are
allocated - AREA with space for three variables and
BDATA, with space for four variables and the 30
element array, ZAP.

Example o
COMMON //A1,B1/CDATA/ZOT (3, 3) i
X //72,23

In this example, Al, B1, T2 and 23 are assigned to
blank COMMON in that order. The pair of slashes
preceding A1l could have been omitted.

CDATA names COMMON block storage for the nine
element array, 20T and thus 20T (3,3) is an array
declarator. 20T must not have been previously
declared. (See ~"Array Declarators,” Paragraph

L3 .

Additional Considerations:

1. The name of a COMMON block may aprear more than
once in the same COMMON statement, ©or in more
than one COMMON statement.

2. A COMMON block name is made up of from 1 to 6
alphanumeric characters, the first of which
must be a letter.

3. A COMMON block name must be different from any N
subprogram names used throughout the program.

FORTRAN-80 Reference Manual Page 39

i

6.7

4., The size of a COMMON area may be increased by
the use of EQUIVALENCE statements. See
"EQUIVALENCE Statements," Paragraph 6.7.

S. The lengths of COMMON blocks of the same name
need not be identical in all program units
where the name appears. However, if the
lengths differ, the program unit specifying the
greatest length must be loaded first (see the
discussion of LINK-80 in. the User's Guide).
The length of a COMMON area is the number of
storage units required to contain the variables
and arrays declared in the COMMON statement (or
statements) unless expanded by the use of
EQUIVALENCE statements.

EQUIVALENCE STATEMENTS

Use of EQUIVALENCE statements permits the sharing
of the same storage unit by two or more entities.
The general form of the statement is as follows:

* EQUIVALENCE (u1), (u2),...,(un)

where esach ui represents a seqguence of two or more
variables or array elements, separated by cormas.
Each element in the sequence is assigned the same
storage unit (or portion of a storage unit) by the
processor. The order in which the elements appear
is not significant.

Example:
EQUIVALENCE (A,B,C)

The variables A, B and C will share the same
storage unit during object program execution.

I1f an array element is used in an EQUIVALENCE
statement, the number of subscripts must be the
same as the number of dimensions established by the
array declarator, or it must be one, where the one
subscript specifies the array element's number
relative to the first element of the array.

Example:

I1f the dimensionaliity of an array, Z, has been
declared as 2(3,3) then in an EQUIVALENCE statement
2(6) and 2(3,2) have the same meaning.

PR

FORTRAN-80 Reference Manual Page 40

Additonal Considerations:

1.

2.

The subscripts of array elements must be
integer constants.

An element of a multi-dimensional array may be
referred to by a single subscript, if desired.

variables may be assigned to a COMMON block
through EQUIVALENCE statements.

Examgle:

COMMON /X/A,B,C
EQUIVALENCE (A,D)

In this case, the variables A and D share the
first storage unit in COMMON block X.

EQUIVALENCE statements can increase the size of
a block indicated by a COMMON statement by
adding more elements to the end of the block.
Example:

DIMENSION R(2,2)

COMMON /Z/W,X,Y

EQUIVALENCE (Y,R(3))

The resulting COMMON block will have the
following configuration:

Variable Storage Unit

W= L(1;1) 0
X = R(2,1) 1
Y = R(1,2) 2

R(2,2) 3

The COMMON block established by the COMMON
statement contains 3 storage units. It is
expanded to 4 storage units by the EQUIVALENCE
statement.

COMMON block size may be increased only from
the last element established by the COMMON
statement forward; not from its first element
backward. :

Note that EQUIVALENCE (X,R(3)) would be invalid
in the example. The COMMON st;ﬁement
established W as the first . element in the
COMMON block and an attempt to make X and R(3)
equivalent would be an attempt to make R(1) the
first elemer®. .

FORTRAN-80 Reference Manual Page 41

6.8

§. It is invalid to EQUIVALENCE two elements of
the same array or two elements belonging to the
game or different COMMON blocks.

Example:

DIMENSION XTABLE (20), D(5)
COMMON A,B({)/ZAP/C,X

EQUiVALENCE (XTABLE (6) ,A(7)
X B(3) ,XTABLE(5)),
Y (B(3),D(5))

This EQUIVALENCE statement has ‘the following
errors: :

1. It attempts to EQUIVALENCE two elements of the
same array, XTABLE(6) and XTABLE (15).

2. It attempts to EQUIVALENCE two elements of the
game COMMON block, A(7) and B(3).

3. Since A is not an array, A(7) is an illegal
reference.

4. Making B(3) equivalent to D(5) extends COMMON
backwards from its defined starting point.

DATA INITIALIZATION STATEMENT

The DATA initialization statement is a
non-executable statement which provides a means of
compiling data values into the object program and
assigning these data to variables and array
elements referenced by other statements.

The statement is of the following form:
DATA list/u1,u2,...,un/.list.../uk,uk+1,...uk+n/

where "list" represents a list of wvariable, array
or array element names, and the ui are constants
corresponding in number to the elements in the
list. An exception to the one-for-one
correspondence of list items to constants -is that
an array hame (unsubscripted) may appear in the

FORTRAN-80 Reference Manual Page 42

list, and as many constants as necessary to f£ill '
the array may appear in the corresponding position
between slashes. Instead of ui, it is permissible

to write k#*ui in order to declare the same
constant, ui, k times in succession. k must be a
positive integer. Dummy arguments may not appear

in the list.

Examgle:

DIMENSION C(7)
x -801'2'7.5/

This implies that
A=14.73, B==8.1, C(1)=7.5, C(3)=7.5

The type of each constant ui must match the type of
the corresponding item in the list, except that a
Hollerith or Literal constant may be ‘paired with an
item of any type.

When a Hollerith or Literal constant is wused, the
number of characters in its string should be no
greater than four times the number of storage units
required by the corresponding item, i.e., 1 {
character for a Logical variable, up to 2
characters for an Integer variable and 4 or fewer
characters for a Real variable.

J

I1f fewer Hollerith or Literal characters are
specified, trailing blanks are added to fill the
remainder of storage.

Hexadecimal data are stored in a similar fashion.
If fewer Hexadecimal characters are used,
sufficient leading zeros are added to fill the
remainder of the storage unit.

The examples below illustrate many of the features
of the DATA statement.

FORTRAN-80 Reference Manual Page 43

: DIMENSION HARY (2)
DATA HARY,B/ 4HTHIS, 4H OK.
1 y7.86/

REAL LIT(2)

LOGICAL LT,LF

DIMENSION H4(2,2),PI3(3)

DATA A1,B1,K1,LT,LF,H4(1,1) ,H4(2,1)

H4(1,2) ,H4(2,2),PI13/5.9,2.5E=4,

64, .FALSE.,.TRUE.,1.75E-3,
0.85E-1,2*75.0,1.,2.,3.141538/
LIT(1)/'NOGO'/

F ™R N P

FORTRAN-80 Reference Manual Page 44 =

SECTION 7), B

FORTRAN CONTROL STATEMENTS

FORTRAN control statements are executable statements which
affect and guide the logical flow of a FORTRAN program. The
statements in this category are as follows:
1. GO TO statements:
1. Unconditional GO TO
2. Computed GO TO

3. Assigned GO TO

2. ASSIGN
3. IF statements:
1. Arithmetic IF

2. Logical IF

A

4. DO

S. CONTINUE

6. STOP
7. PAUSE
8. CALL
9. RETURN

When statement labels of other statements are a part of a
control statement, such statement labels must be associated
with executable statements within the same program unit 1in
which the control statement appears.

7.1 GO TO STATEMENTS
7.1.1 UNCONDITIONAL GO TO

Unconditional GO TO statements are used whenever
control 1is to Dbe transferred unconditionally to
some other statement within the program unit.

P

FORTRAN-80 Reference Manual Page 45

7.1.3

310. ‘

The statement is of the following form:
GO TO k

where k is the statement label of an executable
statement in the same program unit.

Example:

GO TO 376
310 ,5(7) = V1 =A(3)

376 A(2) =VECT
GO TO 310

In these statements, :tatement‘ 376 is ahead of
statement 310 in the logical flow of the program of
which they are a part.

COMPUTED GO TO
Computed GO TO statements are of the form:
GO TO (k1,k2,...,M),]3

where the ki are statement labels, and j is an
integer variable, 1 < j < n.

This statement causes transfer of control to the
statement labeled kj. If j < 1 or j > n, control
will be passed to the next statement following the
Computed GOTO.

Examgle:
J=3

Go To(7, 70, 700, 7000, 70000), J
310 J=5
GO TO 325

!
l

When J = 3, the computed GO TO transfers control to
statement 700. Changing J to equal 5 changes the
transfer to statement 70000. Making J = 0orJ=¢6
would cause control to be transferred to statement

:
ASSIGNED GO TO i

Assigned GO TO statements are of the' following

-

FORTRAN-80 Reference Manual Page 46

form:
Go To j:(k1,k2,....kn)
or

GOTO J

where J is an integer variable name, and the ki are

statement labels of executable statements., This
statement causes transfer of control to the
statement whose label is equal to the current value
of J.

Qualifications N

1. The ASSIGN statement must logically precede an
assigned GO TO.

2. The ASSIGN statement must assign'a value to J
which is a statement label included in the list
of k's, if the list is specified.

Example:

GO TO LABEL, (80,90, 100)

Only the statement labels 80, 90 or 100 may be

assigned to LABEL.

ASSIGN STATEMENT

This statement is of the following form:
ASSIGN j TO i

where j is a statement label of an executable
statement and i is an integer variable.

The statement is used in conjunction with each
assigned GO TO statement that contains the integer
variable i. When the assigned GO TO is executed,
control will be transferred to the statement
labeled jJ.

v
(~_.‘r‘

FORTRAN-80 Reference Manual Page 47
- &

Example:
ASSIGN 100 TO LABEL

ASSIGN 90 TO LABEL
GO TO LABEL, (80,90,100)

7.3 IF STATEMENT
IF statements transfer control to one of a series
of statements depending upon a condition. Two

types of IF statements are provided:

Arithmetic IF
Logical IF

7.3.1 ARITHMETIC IF
The arithmetic IF statement is of the form:
- IF (e) m1,m2,m3

where e is an arithmetic expression and m1, m2 and
m3 are statement labels.

Evaluation of expression e determines one cof three
transfer possibilities:

If e is: Transfer to:
<0 mi
= 0 m2
>0 m3 ,

Examples:

Statement Expression Value Transfer tc
IF (A)3,4,5 15 / 5
IF (N-1)50,73,9 0 73
IF (AMTX(2,1,2))7,2,1 =256 7

7.3.2 LOGICAL IF :
' The Logical IF statement is of the form:
11

IF (u)s

= - where u is a Logical expression and S is any
- executable statement except a DO statement (see
7.4) or another Logical IF statement. The Logical

Ay

FORTRAN-80 Reference Manual Page 48

exprgssion u is evaluated as .TRUE. or .FALSE.
Section 4 contains a discussion of Logical
expressions.

Control Conditions:

If u is FALSE, the statement S is ignored and
control goes to the next statement following the
Logical IF statement. I1f, however, the expression
is TRUE, then control goes to the statement s, and
subsequent program control follows normal
conditions.,

If s is a replacement statement (v = e, Section 5),
the variable and equality sign (=) must be on the
game line, either immediately following IF(u) or on
a separate continuation line with the line spaces
following IF(u) left blank. See example 4 below.

Examples:
1. IF(I.GT.20) GO TO 115
2. IF(Q.AND.R) ASSIGN 10 TO J
3. IF(Z) CALL DECL(A,B,C)
4. IF(A.OR.B.LE.PI/2)I=J
s. IF(A.OR.B.LE.PI/2)
X I=J
DO STATEMENT
The DO statement, as implemented in FORTRAN,
provides a method for repetitively executing a

geries of statements. The statement takes of one
of the two following forms:

1) DO XK i = m1,m2,m3
or
2) DO k i = ml,m2

-,

where k is a statement label, i is an integer or
logical variable, and mt', m2 and m3 are integer
constants or integer or logical variables.

If m) is 1, it may be omitted as in 2) above.

The following conditions and restrictions govern
the use of DO statements:

<!

FORTRAN-80 Reference Manual Page 49

1.

The DO and the first comma must appear on the
initial line.

The statement labeled k, called the terminal
statement, must be an executable statement.

The terminal statement must physically follow
its associated Do, and the executable
statements following the DO, up to and
including the terminal statement, constitute
the range of the DO statement.

The terminal statement may not be an Arithmetic
IF, GO TO, RETURN, STOF, PAUSE or another DO.

If the terminal statement is a logical 1IF and
its expression is . FALSE., then the statements
in the DO range are reiterated.

If the expression is .TRUE., the statement of
the logical IF is executed and then the
statements in the DO range are reiterated. The
statement of the logical IF may not be a GO TO,
Arithmetic IF, RETURN, STOP or PAUSE.

The controlling integer variable, i, is called
the index of the DO range. The index must be
positive and may not be modified by any
statement in the range.

If m1, m2, and m3 are Integer*1 variables or
constants, the DO loop will execute faster ancd
be shorter, but the range is limited ¢to 127
iterations. For example, the loop overhead for
a DO loop with a constant limit and an
increment of 1 depends upon the type of the
index variable as follows:

Index Variable Overhead

Type Microseconds Bytes
INTEGER*2 35.5 19
INTEGER*1 24 ' 14

During the first execution of the statements in
the DO range, i is equal to ml; the second

execution, i = mi+m3;

etc., until i is egual
this sequence less than
then the DO is said
gstatements in the DO
executed at least once,

the third, i=mi+2*m3,

to the highest value in
or equal to m2, and
‘to be satisfied. The
range will always be
even if m1 < m2.

When the DO has been satisfied, control passes

to the statement

following the terminal

FORTRAN~-80 Reference Manual Page 50

statement, otherwise control transfers back to
the first executable statement following the DO
statement.

Example:

The following example computes
100 '
Sigma AL where a is a one-dimensional array
i=1

100 DIMENSION A(100)

SUM = A(1)
DO 31 I = 2,100
31 SUM =SUM + A(I)

END

The range of a DO statement may be extended to
include all statements which may logically be
executed between the DO and its terminal
statement. Thus, parts of the DO range may be
situated such that they are not physically
between the DO statement and its terminal
statement but are executed logically in the DO
range. This is called the extended range.

Examgle:
DIMENSION A(500), B(500)
DO 50 I = 10, 327, 3
IF (V] -C*C) 20,15,31

SO A(I) = B(I) + C

20 ¢ =C - .05

GO TO 50 : -
31 C=C+ .0125 S

GO TO 30

FORTRAN-80 Reference Manual Page 51

(10. It is invalid to transfer control into the
- range of a DO statement not itself in the range
or extended range of the same DO statement.

11. Within the range of a DO statement, there may
be other DO statements, in which case the DO's
must be nested. That is, if the range of one
DO contains another DO, then the range of the
inner DO must be entirely included in the range
of the cuter DO.

The terminal statement of the inner DO may also
be the terminal statement of the outer DO.

For example, given a two dimensional array A of
15 rows and 15 columns, and a 15 element
one-dimensional array B, the following
statements compute the 15 elements of array C
to the formula:

) 15
- Ck =Sigma AkjBm, k = 1,2,...,15
. J=1

DIMENSION A(15,15), B(15), C(13)

DO 80 KX =1,15
C(K) = 0.0
DO 80 J=1,15
B0 C(K) = C(K) +A(K,J) * B(J)

7.5 CONTINUE STATEMENT

CONTINUE is classified as an executable statement.
However, its execution does nothing. The form of
the CONTINUE statement is as follows:

CONTINUE

CONTINUE is frequently used as the terminal
statement in a DO statement range when the
statement which would normally be the terminal
statement is one of those which are not allowed or
isonly executed conditionally.

e —————— — Ty —

FORTRAN-80 Reference Manual Page 52

7.6

7.7

Examgle:
DO S K= 1,10

IFP (C2) 5,6,6
6 CONTINUE

C2 = C2 +.005
S CONTINUE

STOP STATEMENT

A STOP statement has one of the fol_owing fcrms:
STOP
or
STOP ¢
where c is any string of one to six characters.
When STOP is encountered during execution of the
object program, the characters ¢ (if present) are
displayed on the operator control console and
execution of the program terminates.
The STOP statement, therefore, constitutes the
logical end of the program.

PAUSE STATEMENT

A PAUSE statement has one of the fcllowing forms:
PAUSE
or
PAUSE ¢
where ¢ is any string of up to six characters.
when PAUSE is encountered during execution of the
object program, the characters ¢ (if present) are
displayed on the operator control console and

execution of the program ceases.

The decision to continue execution of the 'prog;am
is not under control of the program. If execution

)

FORTRAN-80 Reference Manual Page 53

7.8

7.9

is resumed through intervention of an operator
without otherwise changing the state of the
processor, the normal execution seguence, £fcllowing
PAUSE, is continued.

Execution may be terminated by typing a *T" at the

operator console. Typing any other character will
cause execution to resume.

CALL STATEMENT

CALL statements control transfers into SUBROUTINE
subprograms and provide parameters for use by the
subprograms. The general forms and detailed
discussion of CALL statements appear in Section 9,
FUNCTIONS AND SUBPROGRAMS.

RETURN STATEMENT

The form, use and interpretation .of the RETURN
statement is described in Section 9.

END STATEMENT

The END statement "must physically be the last
gstatement of any FORTRAN program. It has the
following form:

END

The END statement is an executable statement and
may have a statement label. It causes a transfer
of control to be made to the system exit routine
$EX, which returns control to the operating system.

SATETE * Bl @b

FORTRAN-80 Reference Manual Page 5S4

SECTION 8

INPUT / OUTPUT

FORTRAN provides a series of statements which define the
control and conditions of data transmission between computer
memory and external data handling or mass storage devices
such as magnetic tape, disk, 1line printer, punched card
processors, keyboard printers, etc.

These statements are grouped as follows:
1. Formatted READ and WRITE gstatements which cause

formatted information to be transmitted between the
computer and I/0 devices.

2. Unformatted READ and WRITE statements which
transmit unformatted binary data in a form similar
to internal storage.)

3. Auxiliary I/O statements for positioning and
demarcation of files.

4. ENCODE and DECODE statements for transferring data
Detween memory locations. .

§, FORMAT statements used in conjunction with
formatted record transmission to provide data
conversion and editing information between internal
data representation and external character string

forms.
8.1 FORMATTED READ/WRITE STATEMENTS
8.1.1 FORMATTED READ STATEMENTS

A formatted RZAD statement is used to transfer
information from an input device to the computer.

T™wo forms of the statement are available, as
follows::

READ (u,f,ERR=L1,END=L2) k

or

READ (u,f,ERR=L1,END=L2)
where:

u - specifies a Physical and Logical Unit Number
and may be either an unsigned integer oI an

FORTRAN-80 Reference Manual Page 55

. integer wvariable in the range 1 through 255.

{ . I1f an Integer variable is wused, an Integer
value must be assigned to it prior to execution
of the READ statement.

Units 1, 3, 4, and 5 are preassigned to the
console Teletypewriter. Unit 2 is preassigned
to the Line Printer (if one exists). Units
6-10 are preassigned to Disk Files (see
Appendix E). These units, as well as units 11
- 255, may be re-assigned by the user (see
Appendix B).

f - is the statement label of the FORMAT statement
describing the type of data conversion to be
used within the input transmission or it may be
an array name, in which case the formatting
information may be input to the program at the
execution time. (See 8.7.10)

L1- is the FORTRAN label on the statement to which
the I/0 processor will transfer. control if an
I/0 error is encountered.

L2- is the FORTRAN label on the statement to which
the I/0 processor will transfer control if an
End-of-File is encountered.

k - is a list of variable names, separated by com-
mas, specifying the input data.

READ (u,f)k is used to input a number of items,
corresponding to the names in the list k, from the
file on logical unit u, and using the FORMAT
statement £ to specify the external representation
of these items (FORMAT statements, 8.7) The ERR=
and END= clauses are optional. I1f not specified,
1/0 errors and End-of-Files cause fatal runtime

errors.

The following notes further define the function of
the READ (u,f)k statement:

1. Each time execution of the READ statement
begins, a new record . from the input file 1is
read. ;

2. The number of records to be input by a single
READ statement is determined by the list, k,
and format specifications.

1

3. The list k specifies thefnumber of items to be
S read from the input file ancé the locations into
= which they are to be stored. -

FORTRAN-80 Reference Manual " Page 56

4.

5.

6.

Any number of items may appear in a single list
and the items may be of different data types.

If there are more quantities in an input record

than there are items in the list, only the

number of quantities equal to the number of
items 4in the list are transmitted. Remaining
quantities are ignored.

Exact specifications for the list k are
described in 8.6.

Examples:

1.

Assume that four data entries are punched in a
card, with three blank columns separating each,
and that the data have field widths of 3, 4, 2
and S characters respectively starting in
column 1 of the card. The statements

READ(5,20)K,L,M,N :
20 PORMAT (I3,3X,I4,3X,12,3X,I5)

will read the card (assuming the Logical Unit
Number 5 has been assigned to the card reader)
and assign the input data to the variables K,
L, M and N. The FORMAT statement could also be

20 FORMAT(I3,17,15,18)

See 8.7 for complete description of FORMAT
statements.

Input the gquaantities of an array (ARRY) :
READ(6,21)ARRY

Only the name of the array needs to appear in
the 1list (se2 8.6). All elements of the array
ARRY will ba read and stored using the
appropriate formatting specified by the FORMAT
statement labeled 21.

READ (u,k) may be used in conjunction with a FORMAT
statement to read H-type alphanumeric data into an
existing H-type field (see Hollerith Conversions,

8.7.3).

For example, the statements

READ (I,25)

25 FORMAT (10HABCDEFGHIJ)

b —

FORTRAN-80 Reference Manual : Page 57

8.1.2

cause the next 10 characters of the file on input
device 1 to be read and replace the characters
ABCDEFGHIJ in the FORMAT statement.

FORMATTED WRITE STATEMENTS

A formatted WRITE statement is used to transfer
information from the computer to an output device.

™o forms of the statement are available, as
follows:

WRITE (u,f,ERR=L1,END=L2)k

or

WRITE (u,f,ERR=L1,END=L2)
where:
u - specifies a Logical Unit Number.

£ - is the statement label of the FORMAT statement *
describing the type of data conversion to be
used with the output transmission.

L1- specifies an I/O error branch.
L2- specifies an EOF branch.

K - is a list of variable names separated by com-
mas, specifying the output data.

WRITE (u,f)k is used to output the data specified
in the list k to a file on logical unit u using the
FORMAT statement f to specify the external
representation of the data (see FORMAT statements,
8.7). The following notes further define the
function of the WRITE statement:

1. Several records may be output with a single
WRITE statement, with the nurber determinecd by
the list and FORMAT specifications.

2. Successive data are output until the data
specified in the 1ist are exhausted.

3, 1If output is to a device which specifies fixed
length records and the data specified in the
1ist do not f£ill the record, the remainder of
the record is filled with blanks.

———————— —— S ——. . —— _..v...__.r..

’
e

FORTRAN-80 Reference Manual ' Page 58 =

Example: i ==

WRITE(2,10)A,B,C,D

The data assigned to the variables A, B, C and D
are output to Logical Unit Number 2, formatted
according to the FORMAT statement labeled 10. -

WRITE (u,f) may be used to write alphanumeric
information when the characters to be written are
specified within the FORMAT statement. In this
case a variable list is not required.

E For example, to write the characters ‘H CONVERSION'
on unit 1,

WRITE(1,26)

26 FORMAT (12HH CONVERSION)

8.2 UNFORMATTED READ/WRITE

Unformatted I/0 (i.e. without data conversion) 1s .
accomplished using the statements: o

READ (u,ERR=L1,END=L2) k

R

WRITE (u,ERR=L1,END=L2) k
where:
u - specifies a Logical Unit Number.

Li- specifies an 1/0 error branch.

L2~ specifies an EOF branch.

k - is a list of variable names, separated by
commas, specifying the I/0 data.

The following notes define the functions of
unformatted I/0 statements.

% 1. Unformatted READ/WRITE statements perform)
memory-image trarsmission of data with no data

g conversion or editing. .

€ 2. The amount of data transmitted: corresponds to

the number of variables in the list k.

Y "t R S S

FORTRAN-80 Reference Manual Page 59

3. The total length of the list of variable names
- in an unformatted READ must not be longer than
the record 1length. If the logical record
length and the length of the list are the same,
the entire record is read. If the length of
the 1list 4is shorter than the logical record
length the unread items in the record are
skipped.

4. The WRITE(a)k statement writes one logical
record.

5. A logical record may extend across more than
one physical record.

8.3 DISK FILE 1/0

A READ or WRITE to a disk file (LUN 6-10)
automatically OPENs the file far I/0. The file
remains open until closed by an ENDFILE command
(see. Section 8.4) or until normal program
termination.

NOTE

Exercise caution when doing seguential
output to disk files. If output is dore to
an existing file, the existing file will be
deleted and replaced with a new file of the
same name.

8.3.1 RANDOM DISK 1/0

SEE ALSO SECTION 3 OF YOUR MICROSOFT FORTRAN USER'S
MANUAL.

Some versions of FORTRAN-80 also provide random
disk 1I/0. For random disk access, the record
number is specified by using the REC=n option in
the READ or WRITE statement. For example:

I =10

WRITE (6,20,REC=I,ERR=50) X, Y, 2

[
)]
. t

This program segment writes recoré 10 or. LUN 6. If
a previous record 10 exists, it is wrlitten over.
I1f no record 10 exists, the file is extended to

g
z
¢
&

ey

FORTRAN-80 Reference Manual ‘ Page 60

create one. Any attempt to read a non-existent
record results in an I/0 error.

In random access files, the record length varies
with different versions of FORTRAN. See Section 3
of your Microsoft FORTRAN User's Manual. It is
recommended that any file you wish to read randomly
be created via FORTRAN (or Microsoft BASIC) random
access statements, Files created this way (using
either binary or formatted WRITE atatements) will
zero-£fill each record to the proper length if the
data does not f£ill the record.

Any disk file that is OPENed by a READ or WRITE
statement is assigned a default filename that is
specific to the cperating system. See also Section
3 of the FORTRAN User's Manual.

8.3.2 OPEN SUBROUTINE

Alternatively, a file may be OPENed using the OPEN
subroutine. LUNs 1-5 may also be assigned to disk
files with OPEN. The OPEN subrputine allows the
program to specify a filename and device to be
associuted with & LUN.

An OPEN of a non-existent-file creates a null file
of the appropriate name. An OPEN of an existing
file followed by sequential output deletes the
existing file. An OPEN of an existing file
followed by an input allows access to the current
contents of the file.

The form of an OPEN call varies under different
operating systems. See your Microsoft FORTRAN
User's Manual, Section 3.

AUXILIARY I/0 STATEMENTS

Three auxiliary I/0 statements are provided:

BACKSPACE u
REWIND u
ENDFILE u

The actions of all three statements depend on the
LUN with which they are used (see Appendix B).
When the LUN is for a terminal or line printer, the
three statements are defined as no-ops.

When the LUN is for a disk drive, the ENDFI}E and
REWIND commands allow further program ccntrql of
disk files. ENDFILE u closes the file associated

with LUN u. REWIND u closes the file associated

FORTRAN-80 Reference Manual Page 61

with LUN u, then opens it again. BACKSPACE is not
by implemented at this time, and therefore causes an
error if used.

8.5 ENCODE/DECODE -

Er

ENCODE and DECODE statements transfer data,
according to format specifications, from one
section of memory to another., DECODE changes data
from ASCII format to the specified format. ENCODE
changes data of the specified format into ASCII
format. The two statements are of the form:

ENCODE (A,F) K
DECODE (A,F) K

where;

A is an array name
F is FORMAT statement number,
K is an I/0 List

DECODE is analogous toc a READ statement, sSince it
causes conversion from ASCII to internal format.
ENCODE is analogous to a WRITE statement, causing
v conversion from internal formats to ASCII.

gz

:

T

[) WET

s

e

[o)

e W —— - wenc - —————— ——— —— —— —— . o

FORTRAN-80Reference Manual

8.6

8.6.1

Page 62

NOTE

Care should be taken that the array A is
always large enough to contain all of the
data being processed. There is no check
for overflow. An ENCODE operation which
overflows the array will probably wipe out
important data following the array. A
- DECODE operation which overflows will
attempt to process the data following the

array.

INPUT/OUTPUT LIST SPECIFICATIONS

Most forms of READ/WRITE statements may contain an
ordered 1list of data names which identify the data
to be transmitted., The order in which the list
items appear must be the same as that in which the
corresponding data exists (Input), or will exist
(Output) in the external I/0 medium.

Lists have the following form:

mi,m2,...,mn

where the mi are list items separated by commas, as
shown.

LIST ITEM TYPES

A list item may be a single datum identifier or a

multiple data identifier.

1. A single datum identifier item is the name of a
variable or array element. One or more of
these items may be enclosed in parentheses
without changing their intended meaning.

Examples:

A
C(26)1) 'R'Kle (IpJ)
8,1(10,10),S,(R,K),F(1,25)

NOTE
The entry (I,J) defines two items in a
list while (26,1) is a ;upscript.

oy

ks en s

-+

~ *

— — - -

FORTRAN-80 Reference Manual Page 63

2.

Multiple data identifier items are in two
forms:

a. An array name appearing in a list without
subscript(s) is considered equivalent to the
listing of each successive element of the
array.

Examgle:

1f B is a two dimensional array, the list item
B 4is egquivalent to: B(1,1),B(2,1),B(3,N.eesy
3(1'2) 15(2'2)00',B(j'k)0

where j and k are the subscript limits of B.

b. DO-implied items are lists of one or more
single datum identifiers or other DO-implied
jtems followed by a comma character and an
expression of the form:

i « m,m2,m3 or i = ml,m2
and enclosed in parentheses.

The elements i,m1,m2,m3 have the same ‘meaning
as defined for the DO statement. The DO
implication applies to all list items enclosed
in parentheses with the implication.

Examgles:

DO-Implied Lists Equivalent Lists
X(1),%X(2),X(3),X(4)
(Q(J),R(J)oJ":z) 0(1).R(1).Q(2).R(2)
(G(K) ,K=1,7,3) G(1),G(4),G(7)
((A(X,3),1I=3,5),3=1,9,4) A(3,1),A(4,1),A(5,1)
a(3,s),A(4,5) ,A(S,5)
A(3,9),A(4,9),A(5,9)
R(1),R(2),I,ZAP(3)
R(3),T(1),R(3),T(2),
R(3),T(3)

(X(I),I=1,4)

(R(M) ,M=1,2),I,2AP(3)
(R(3),T(I),I=1,3)

Thus, the elements of a matrix, for example,
may be trarsmitted in an order different from
the order in which they appear in storage. The
array A(3,3) occupies storage in the order
A(1,1),A(2,1), A(B,1X.A(1.2).A(2.2)'A(3.2),
A(1,3),A(2,3),A(3,3). . By specifying the
transmission of the array with the DO-implied
list ditem ((A(1,3),3=1,3),I=1,3), the order of
transmission is: Co -

Fosesmrer |

FORTRAN-80 Reference Manual Page 64

A(1,1),A(1,2),A(1,3),A(2,1),A(2.2),
A(2,3),A(3.1).A(3,2).A(3p3)

8.6.2 SPECIAL NOTES ON LIST SPECIFICATIONS

1. The ordering of a list is from 1jeft to right
with repetition of items enclosed in
parentheses (other than as subscripts) when

accompanied by controlling pDO-implied index
parameters.

2. Arrays are transmitted by the appearance of the

;iray name (unsubscripted) in an input/output
st.

3. Constants may appear in an input/output list
only as subscripts or as indexing parameters.

4. For input lists, the po-implying elements i,

mi, m2 and m3 fmay not appear within the
parentheses as list items.

ExamEles:

1. READ (1,20) (I,J,A(I),I-1,J,2) is not allowed
2. READ(1,20)I,J.(A(I),I-1,J,2§ is allcwed

3. WRITE(1,20)(I,J,A(I),I-1.J,2) is allowed
Consider the following examples:

DIMENSION A(25)

WRITE (1,20) J,(I,A(I),I=1,J,2)

the output of this WRITE statement is

5,1,2.1,3,2.2,5,2.3

1. Any number of items may appear in a’ single
list.

FORTRAN-80 Reference Manual Page 65

i‘\ 2. In a formatted transmission (READ(u, f)k,
el WRITE(u,f)k) each item must have the correct
type as specified by a FORMAT statement.

8.7 FORMAT STATEMENTS

FORMAT statements are non-executable, generative
statements used in conjunction with formatted READ
and WRITE statements. They specify conversion
methods and data editing information as the data is
transmitted between computer storage ané external
media representation.

FORMAT statements require statement labels for
reference (f) in the READ(u,f)k or WRITE(u,f)k
statements. .

The general form of a FORMAT statement is as
follows:

- n FORMAT (81,$2,...,8n/s1',82",...,8n'/...)

where n is the statement label and each si is a
field descriptor. The word FORMAT and the
parentheses must be present as shown. The slash
(/) and comma (,) characters are field separators

ot and are described in a separate subparagraph. The
field is defined as that part of an external record
occupied by one transmitted item.

8.7.1 FIELD DESCRIPTORS

Field descriptors describe the sizes of data fields
and specify the type of conversion to be exercised
upon each transmitted datum. The FORMAT field
descriptors may have any of the following forms:

Descriptor Classification

rfFw.d
rGw.d
rEw.d Numeric Conversion
rDw.d :
riw X

/

rlw Logical Conversion
TAw X

- nHh1h2...hn Hollerith Conversion
\ *1112,..1n!

i nx Spacing Specificati®n
mP Scaling Factor

R e @ cmEmm e eST

FORTRAN-80 Reference Manual page 66

8.7.2

where:?

1, w and n are positive integer constants defining
the field width (including digits., decimal
points, algebraic signs) in the external data

representation.

2. 4 is an Ainteger specifying the number of
fractional digits appearing in the external
data representation.

3. The characters P, G, E, Dy 1, Aand L indicate
the type of conversion to be applied to the
items in an input/output list.

4, T is an optiocnal, non-zero integer indicating
that the descriptor will be repeated I times.

s. The hi and 1i are characters from the FORTRAN
character set. '

6. mis an integer constant (positive, negative,
or zero) indicating scaling.

NUMERIC CONVERS IONS

Input operations with any of the numeric
conversions will allow the data to be represented
in a "Free Format"; 1i.e.. commas may pe wused to
separate the fields in the external representation.

F-tyve conversion

Form: Fw.d

Real or Double Precision type data are prccessed
using this conversion. ¥ characters are processed
of which 4 are considered fractional.

F-output

Vvalues are converted and output as minus sign (Lf
negative) ., followed bY the integer portion of the
number, 2 decimal point and 4 digites of the
gractional portion of the number. 1£ a value does
not fill the field, it is right justitied in the
£ield and enough preceding blanks tO £i1l the field
are inserted. 1¢ a value requires more field
positicns than allowed by W, the first w=1 digits
of the value are output, preceded by an asterisk.

FORTRAN-80 Reference Manual Page 67

F-Output Examples:

FORMAT Internal Output

Descriptor Value (b=blank)

F10.4 368.42 bb362.4200

F7.1 -4786.361 -4786.4

F8.4 8.7E-2 bb0.0375

F6.4 4739.76 *,7600

* Note the loss of leading digits in the 4th line
above.

F=-Input

(See the description under E-Input below.)

E-type Conversion

Form: Ew.d

Real or Double Precision type data are processecd
using this conversion. w characters are processed
of which & are considered fractional.

E-Output

Values are converted, rounded to d digits, and
output as:

1.
2.
3.
4.
S.
6.

a minus sign (if negative),
a zero and a decimal point,
d decimal digits,

the letter E,

the sign of the exponent (minus or blank),

two exponent digits,

in that order. The values as described are right
justified in the field w with preceding blanks to
£ill the field if necessary.. The field width W
should satisfy the relationship:

w>as+ 7 f

Otherwise significant characters may be lost. Some
E-Output examples follow: ‘

FodaRAE,

e o— " PR

FORTRAN-80 Reference Manual Page 68

:

FORMAT Internal output
» Descriptor Value (b=blank)
é B12.5 76.573 bb.76573Eb02

E14.7 -32672,354 -b.3267235EbOS
g E13.4 -0,0012321 pb-b.1232E-02
' E8.2 76321.73 b.76EbOS

E-Input

@'
|
&

é

B

=y

are to be processed under E, F,

an be a relatively loose format in
The format is jidentical

is as follows:

Data values which
or G conversion ¢C
the external input medium.
for either conversion and

1. Leading’spaces (ignored)

2. A + or - sign (an unsigned input is assumed tO

be positive)
1, A string of digits
4. A decimal point
§. A second string of digits
6. The character E
7. A+ 0T - sign

8. A decimal exponent

ist above is optional;
ns must be observed:

Each item in the 1 but the
following conditio
1. 1If FORMAT jtems 3 and § (above) are present,
then 4 is required.

2. If FORMAT jtem 8 is present, then 6 or 1 oF
both are required.

3, All non-leading spaces are considered zeros.
Input data can be any number of digits in length,
and correct magnitudes will Dbe developed, but
precision will be maintained only to the extent
specified in Section 3 for Real data.

.

FORTRAN-80 Reference Manual k Page 69

E- and F- and G- Input Examples:

FORMAT Input Internal
Descriptor (b=blank) Value
E10.3 +0.23756+4 +2375.60
E10.3 bbbbb 17631 +17.631
G8.3 b1628911 +1628.911
F12.4 bbbb-6321132 -632.1131

Note in the above examples that if no decimal point
is given among the input characters, the d in the
FORMAT specification establishes the decimal point
in conjunction with an exponent, if given. 1If a
decimal point is included in the input characters,
the d specification is ignored.

The letters E, F, and G are interchangeable in the
input format specifications. The end result is the
same.

D-Type Conversions

D-Input and D-Qutput are identical to E-Input and
E-Output except the exponent may be specified with
a "D" instead of an "E."

G-Type Conversions

Form: Gw.d

Real or Double Precision type data are processed
using this conversion. w characters are processed
of which d are considered significant.

G-Input:
(See the description under E-Input)
G=-Output: |

The method of output conversion is a function of
the magnitude of the number being output. Let n be
the magnitude of the number. The following table
shows how the number will be output:

i

|

!

i gy ; S L
. . ‘!,~ e m

\

FORTRAN-80 Reference Manual
Magnitude Eguivalent Conversion
.1 <=n 1 P(w-4).4,4X
{t<=n 10 r(w-4).(d-1),4x

108-2 <= n < 1087 P (w-4).1,4X
1081 <= n < 108 P (w-4) .0, 4X
Otherwise) Ew.d
1-Conversions

Form: 1Iw

Only Integer data may be
conversion. W specifies field width.

I-Outputs:

Values are converted to
Negative values are preceded by & minus
the value does not £i11 the field, it
jultiried in the field and enough

to £ill the field are inserted.
exceeds the field width, only
w-1 characters are output pre

Examples:

FORMAT Internal Output
Descriptor value (p=blank)
16 +281 bbb281
I6 -23261 -23261
13 126 126
I4 -226 -226

I-Input:

A field of w characters is input and convert
A minus sign may prec
not present,

internal integer format.
the integer digits. If a sign is
value is considered positive.

r values in the range -32768 to

" Intege
Non-leading spaces are. treat

accepted.

preceding b
the

the least s8ig

ceded by an aster

Page 70

converted by this form of

Integer constants.

sign.

is right
lanks
value
nificant
isk.

32767

ed as zeros.

ed to

'
i

(

FORTRAN-80 Reference Manual Page 71

18.7.3

Examples:

Format Input Internal

Descriptor (b=blank) Value
I4 b124 124 ,j
14 =124 -124
17 bb6732b 67320 7
I4 ib2b 1020 3

HOLLERITH CONVERSIONS

A-Type Conversion

The form of the A conversion is as follows:

Aw

This descriptor causes unmodified Hollerith
characters to be read into or written from a
specified list item. .

The ‘maximum number of actual characters which may
be transmitted between internal and external
representations using Aw is four times the number
of storage units in the corresponding list item
(i.e., 1 character for logical items, 2 characters
for Integer items, 4 characters for Real items and
8 characters for Double Precision items).

A-Output:

I1f w is greater than,dn (where n is the number of
storage units required by the 1list item), the
external output field will consist of w-4n blanks
followed by the 4n characters from the internal
representation., If w is less than 4n, the external
output field will consist of the leftmost w
characters from the internal representation.

Examples:
Format Internal Type' ' Output
Descriptor f (b=blanks)
Al A1l Integer A
A2 AB Integer AB
A3 ABCD Real ABC
A4 ABCD Real ABCD |
A7 ABCD Real bbbABCD
A-Input: 2
¥

If w is greater than 4n (where'n is the " pumber of

% FORTRAN-80 Reference Manual " Page 72 -
g storage units required by the corresponding list Cony
: item), the rightmost 4n characters are taken from
the external input field. If w is less than 4n,

g the w characters appear left justified with w-dn
- trailing blanks in the internal representation. i
g Examples: :
: Format Input Type Internal
§ Descriptor Characters (b=blanks)
L a1 A Integer Ab

A3 ABC Integer AB
A4 ABCD Integer AB
4 Al A Real Abbb

A7 ABCDEEG Real DEFG
% H-Conversion

. The forms of H conversion are as follows:
nHh1h2...hn
! '‘hih2...hn’
3 These descriptors process Hollerith character ‘
E strings between the descriptor and the external —
& field, where each h represents any character from
the ASCII character set.
NOTE
Special consideration 1is required if an

apostrophe (') is to be used within the
literal string in the second form. An
apostrophe character within the string is

apostrophes.

represented by two successive
See the examples below.

H=-Output:

B
e

The n characters hi, are placed in the external
field. In the nHh1h2...hn form the number of
characters in the string must be exactly as
spec.fied by n. Ootherwise, characters from other
descriptors will be taken as part of the string.
In both forms, blanks are counted as characters.

SR

FORTRAN-80 Reference Manual Page 73

!

T
i
(' Examples:
|

]
- Format Output
Descriptor (b=blanks)
1 1HA or ‘A’ A
! 8HbSTRINGD or 'bSTRINGb' BSTRINGD
11HX (2,3)=12.0 or 'X(2,3)=12.0° X(2,3)=12.0
& 12HIbSHOULDN'T or 'IbSHOULDN''T' IbSHOULDN'T
]
H-Input

The n characters of the string hi are replaced by
the next n characters from the input record. This
results in a new string of characters in the field

descriptor.
FORMAT Input Resultant
Descriptor (b=blank) Descriptor
' 481234 or '1234" ABCD 4HABCD or ‘'ABCD'
” 7HbbFALSE or 'bbFALSE' bFALSED 7HbFALSED or 'bFALSED'
, 6Hbbbbbb or 'bbbbbb' MATRIX 6HMATRIX or 'MATRIX'

8.7.4 LOGICAL CONVERSIONS

- The form of the logical conversion is as follows:
Lw
L-Output:
If the value of an item in an output list
corresponding to this descriptor is 0, an F will be

output; otherwise, a T will be output. If w |is
greater than 1, w-1 leading blanks precede the

letters.
Examples: ‘
FORMAT Internal Output,
Descriptor Value ! (b=blank)
LT =0 . F
n <0 T
LS <0 : bbbbT
L? =0 | bbbbbbF
L=-Input

The external representation occupies w position-c.
It consists of optional blanks followed by a "T" .r
*"F", followed by optional characters. -t

FORTRAN-80 Reference Manual Page 74

8.7.5 X DESCRIPTOR

The form of X conversion is as follows:
nX

This descriptor causes no conversion to occur, nor
does it correspond to an item in an input/output
1ist. When used for output, it causes n blanks to
be inserted in the output record. Under input
circumstances, this descriptor causes the next n
characters of the input record to be skipped.

Output Examglesz

FORMAT Statement Output
(b=blanks)
3 FORMAT (1HA, 4X, 2HBC) AbbbbBC

7 FORMAT (3%, 4HABCD, 1X) bbbABCDb

Input Examples:

FORMAT Statement Input String Resultant Input
10 FORMAT (F4.1,3%,F2.0) 12.5ABC120 12.5,120
s FORMAT (7X,I3) 1234567012 012

8.7.6 P DESCRIPTOR

The P descriptor is wused to specify a scaling
factor for real conversions (F, E, D. G). The form
is npP where n is an integer constant (positive,
negative, ©F zero).

The scaling factor is automatically set to zero at
the beginning of each formatted I1/0 call (each READ
or WRITE statement). If a P descriptor is
encountered while scanning a FORMAT, the scale
factor is changed to n. The scale factor remains
changed until another P descriptor is encountered
or the 1/0 terminates.

Effects gg Scale Factor on Input:

puring E, F, ©OT G input the scale factor takes
effect only if no exponent is present in the
external representation. In that case, the
internal value will be a factor of 10**n less than
the external value (the number will be Aaivided by
10**n before being stored). P

FORTRAN-80 Reference Manual ‘ ‘Page 75

8.7.7

3.7.7.1

Effect of Scale Factor on OQutput:

E-Output, D=Output:

The coefficient is shifted left n places relative
to the decimal point, and the exponent is reduced
by n (the value remains the same) .

F-Output:

The external value will be 10**n times the internal
value,

&=Output:
The scale factor is ignored if the internal value

is small enough to be output using F conversion.
Otherwise, the effect is the same as for E output.

SPECIAL CONTROL FEATURES OF FORMAT STATEMENTS

Repeat sEecifications

1. The E, F, D, G, I, L and A field descriptors
may be indicated as repetitive descriptors by
using a repeat count r in the form rEw.d,
rFw.d, rGw.d, rlw, rlw, TrAw, The following
pairs of FORMAT statements are eguivalent:

66 FORMAT (3F8.3,F9.2)
C 1S EQUIVALENT TO:
66 FORMAT (FB.B,F8.3,PB.3,F9.2)

14 FORMAT (213,2A5,2E10.5)
Cc IS EQUIVALENT TO:
14 FORMAT (13.IJ,AS,AS,E10.5,E10.5)

2. Repetition of a group of field descriptors 1is
accomplished by enclosing the group in
parentheses preceded by a repeat count.
Absence of a repeat count indicates a count of
one, Up to two levels of parentheses,
including the parentheses required by the
FORMAT statement, are pefmitted.

Note the following eguivalent statements:

gy

—

FETR RS g

o
i

g

S

FORTRAN-80 Reference Manual Page 76
22 FORMAT (13,4(F6.1,2X))
¢ 1S EQUIVALENT TO:
22 FORMAT (I3,F6.1,2x,F6.1.2x,F6.1,2x,
1 F6.1,2X)

3, Repetition of FORMAT descriptors is also
ijnitiated when all descriptors in the FORMAT
statement have been used but there are still

items in the input/cutput 1ist that have not
been processed. When this occurs the FORMAT
descriptors are re-used starting at the first
opening parenthesis in the FORMAT statement. A
repeat count preceding the parenthesized
descriptor(s) to be re-used is also active in
the re-use. This type Oof repetitive use of
FORMAT descriptors terminates processing O, the
current record and initiates the processing of
a new record each time the re-use begins.
Record demarcation under these circumstances is
the same as in the paragraph 8.7:7.2 below.

Input Example:

DIMENSION A(100)
READ (3,13) A

13 FORMAT (5F7.3)

In this example, the first 5 quantities from each
of 20 records are input and assigned to the array

elements of the array A.

Output Example:

.

WRITE (5,12)E,F,K.L,M,KK,LL,
1 M3 _

MM,K3,LE,

12 FORMAT (2F9.4,(3IT)

In this example, three records are written. Record
1 contains E, F, K, L and M. Because the
descriptor 317 is reused twice, Record 2 contains
KK, LL and MM and Record 3 contains K3, L3 and M3.

FORTRAN-80Reference Manual Page 77

E 8.7.7.2 Field Separators

7 T™wo adjacent descriptors must be separated in the
! FORMAT statement by either a comma or one or more
: slashes.
Example:
2HOK/F6.3 or 2HOK,F6.3
The slash not only separates field descriptors, but
it also specifies the demarcation of formatted
records.

f Each slash terminates a record and sets up the next
record for processing. The remainder of an input
record is ignored; the remainder of an output
record is filled with blanks. Successive slashes

, (///+../) cause successive records to be ignored on
input and successive blank records to be written on
output.

Output example:
. DIMENSION A(100),J(20)
-~ :
-~ WRITE (7,8) J,A

8 FORMAT (10I7/10I7/S0F7.3/50F7.3)

In this example, the data specified by the list of
the WRITE statement are output to unit 7 according
to the specifications of FORMAT statement 8. Four
records are written as follows:

Record 1 Record 2 : Record 3 Record 4
J(1) J(11) A(1) A(S1)
J(2) J(12) A(2) A(52)
3(10) 3(20) , A(50) A(100)

Input Example:
DIMENSION B(10)

READ (4,17) B ’
17 FORMAT (F10.2/F10.2///8F10.2)

< In this example, the two array _elements. ~B(1) and
= B(2) receive their values ¢rom the first data

S

GRS femeln ey

o] EER

-

B
&

Ty

m

)

——— —— ———— - S

FORTRAN-80 Reference Manual

8.7.8

Page 78

fields of successive records (the remainders of the
two records are ignored). The third and fourth
records are ignored and the remaining elements of
the array are filled from the fifth record.

O ————

FORMAT CONTROL, LIST SPECIFICATIONS AND RECORD
DEMARCATION ,

The following relationships and interactions
between FORMAT control, input/output lists and
record demarcation should be noted:

1. Execution of a formatted READ or WRITE

statement initiates FORMAT control.

2. The conversion performed on data depends on
information jointly provided by the elements in
the input/output list and field descriptors in

the FORMAT statement.

3. 1If there is an input/output list, at least one
descriptor of types E, F, D, G, I, Lor A must
be present in the FORMAT statement.

4. Each execution of a formatted READ statement
causes a new record to be input.

€. Each item in an input list corresponds to a
string of characters in the record and to 2
descriptor of the types E, F, G, I, Lor A in
the FORMAT statement.

6. H and X -descriptors communicate information
directly between the external record and the
field descriptors without reference to list

items.

7. On input, whenever a gslash 1is encountered in
the FORMAT statement or the FORMAT descriptors
have been exhausted and re-use of descriptors
is initiated, processing of the current record
is terminated and the following occurs:

Any unpfocessed characters in the record
are ignored.

a.

b. If more input is necessary . to satisfy
list requirements, the next record is

read.

B

|

FORTRAN-80 Reference Manual Page 79

j

8.7.9

8. A READ statement is terminated when all items
in the input list have been satisfied if:

a. The next FORMAT descriptor is E, F, G, I,
L or A.

b. The FORMAT control has reached the last
outer right parenthesis of the FORMAT
statement. .

If the input list has been satisfied, but the
next FORMAT descriptor is H or X, more data are
processed (with the possibility of new records
being input) until one of the above conditions
exists.

9. If PFORMAT control reaches the last right
parenthesis of the FORMAT statement but there
are more list items to be processed, all or
part of the descriptors are reused. (See item
3 in the description of Repeat Specifications,
sub-paragraph 8.7.7.1) '

10. When a Formatted WRITE statement is executed,
records are written each time a slash is
encountered in the FORMAT statement oI FORMAT
control has reached the rightmost right
parenthesis. The FORMAT control terminates in
one of the two methods described for READ
termination in 8 above. Incomplete records are
filled with blanks to maintain record lengths.

FORMAT CARRIAGE CONTROL

The first character of every formatted output
record is used to convey carriage control
information to the output device, and is therefore
never printed. The carriage control character
determines what action will be taken before the
line is printed. The options are as follows:

Control Character Action Taken Before Printing
. 0 Skip 2 lines
1 Insert Form Feed
+ No advance

Other Skip 1 line

i
FORMAT SPECIFICATIONS IN ARRRYS

The FORMAT reference, f, of a formatted READ oI
WRITE statement (See B8.1) may be an array name
instead of a statement label. °If such reference 1S

FORTRAN-80 Reference Manual Page 80

made, at the time of execution of the READ/WRITE
statement the first part of the information
contained in the array, taken in natural order,
must constitute a valid FORMAT specification. The
array may contain non-FORMAT information following
the right parenthesis that ends the FORMAT
specification. :

The FORMAT specification which is to be inserted in
the array has the same form as defined for a FORMAT
statement (i.e., it begins with a left parenthesis
and ends with a right parenthesis).

The FORMAT specification may pe inserted in the
array by use of a DATA initialization statement, OT
by use of a READ statement together with an Aw
FORMAT, Example:

Agssume the FORMAT specification
(3F10.3,416)

or a similar 12 character specification is to be
stored into an array. The array must allow a
minimum of 3 storage units.

The FORTRAN coding below shows the various methods
of establishing the FORMAT specification and then
referencing the array for a formatted READ or
WRITE. '

ws

FORTRAN-80 Reference Manual Page 81

,3« C DECLARE A REAL ARRAY
L DIMENSION A(3), B(3), M(4)

C INITIALIZE FORMAT WITH DATA STATEMENT
! DATA A/'(3F1','0.3,','416)'/

C READ DATA USING FORMAT SPECIFICATIONS
C IN ARRAY A
READ(6,A) B, M

C DECLARE AN INTEGER ARRAY
DIMENSION IA(4), B(3), M(4)

C READ FORMAT SPECIFICATIONS
READ (7,15) IA
C PORMAT FOR INPUT OF FORMAT SPECIFICATIONS
15 PORMAT (4A2)

READ DATA USING PREVIOUSLY INPUT
FORMAT SPECIFICATION
READ (7,IA) B,M

00

e

- - . - - - - - L e e e s s — — ——

i

FORTRAN-80 Reference Manual Page 82

SECTION 9

FUNCTIONS AND SUBPROGRAMS

The FORTRAN language provides a means for defining and using
often needed programming procedures such that the statement
or statements of the procedures need appear in a program
only once but may be referenced and brought into the logical
exegu;ion sequence of the program whenever and as often as
needed.

These procedures are as follows:

1. Statement functions.

2. Library functions.

3. FUNCTION subprograms.
4, SUBROUTINE subprograms.

Each of these procedures has its own unique requirements for
reference and defining purposes. These requirements are
discussed in subsequent paragraphs of this section.
However, certain features are common to the whole group or
to two or more of the procedures. These common features are
as follows: '

1. Each of these procedures is referenced by its name
which, in all cases, is one to six alphanumeric
characters of which the first is a letter.

2. The first three are designated as .“functions"™ and
are alike in that:

1. They are always single valued (i.e., they
return one value to the program unit from which
they are referenced). :

2. They are referred to by an axpression
containing a function name.

3. They must be typed by type specification
statements if the data type of the
single-valued result is to be different from
that indicated by the pre-defined convention.

3. FUNCTION subprograms and SUBRCUTINE subprograms are
considered program units. - o

g

R

FORTRAN-80 Reference Manual Page 83

In the following descriptions of these procedures, the term
calling program means the program unit or procedure in which
a reference to a procedure is made, and the term “called
program” means the procedure to which a reference is made.

5.1

9.2

THE PROGRAM STATEMENT

The PROGRAM statement provides a means of
specifying a name for a main program unit. The
form of the statement is:

PROGRAM name

1f present, the PROGRAM statement must appear
before any other statement in the program unit.
The name consists of 1-6 alphanumeric characters,
the first of which is a letter. If no PROGRAM
statement is present in a main program, the
compiler assigns a name of $MAIN to that program.

STATEMENT FUNCTIONS

Statement functions are defined by a single
arithmetic or logical assignment statement and are
relevant only to the program unit in which they
appear. The general form of a statement function
is as follows:

f(al,a2,...20n) = @

where £ is the function name, the ai are dummy
arguments and e is an arithmetic or logical
expression.

Rules for ordering, structure and use of statement
functions are as follows:

1. Statement function definitions, if they exist
in a program unit, must precede all executable
statements in the unit and follow all
specification statements. '

2. " The ai are distinct variable names or array
elements, but, being dummy variables, they may
have the same names as variables of the same
type appearing elsewhere in the program unit.

3. The expression e is constructed according to
the rules in SECTION: 4 and may contain only
references to the 'dummy ~ arguments and
non-Literal constants, variable and array
element references, utility and mathematical
function references ~ and references to

—

;
i

s
|
S

PR,

FREER
i

FORTRAN-80 Reference Manual Page 84

9.3

previously defined statement functions.

4. The type of any statement function name or
argument that differs from its pre-defined
convention type must be defined by a type
specification statement.

S. The relationship between £ and e must conform
to the replacement rules in Section S.

6. A statement function is called by its name
followed by a parenthesized list of arguments.
The expressiown'is evaluated using the arguments
specified in the call, and the reference is
replaced by the result.

7. The ith parameter in every argument list must
agree in type with the ith dummy in the

statement function.

The example below shows a statement function and a
statement function cal..
C STATEMENT FUNCTION DEFINITION
(o

FUNC1(A,B,C,D) =- ((A+B)**C)/D
C STATEMENT FUNCTION CALL

A12-A1-FUNC1(X,Y,Z7,C7)

LIBRARY FUNCTIONS

Library functions are a gIoup of utility and
mathematical functions which are "built-in"™ to the
FORTRAN system. Their names a pre-defined to the
Processor and automatically typed. The functions
are listed in Tables 9-1 and 9-2. In the tables,
arguments are dencted as al,a2,...,an, if more than
one argument is regquired; or as a if only one |is

required. -

A library function is called when its name is used
in an arithmetic expression. Such a reference

takes the following form:

£(al,a2,...an)

where £ is the name of the function and the ai are
actual arguments. The arguments must -agree in
type, number and order with the specifications
indicated in Tables 9-1 and 9-2.

|

FORTRAN-80 Reference Manual Page 85

{ ' .

In addition to the functions listed in 9-1 and 9-2,
four additional library subprograms are provided to
enable direct access to the 8080 (or 280) hardware.
These are:

PEEK, POKE, INP, OUT

PEEK and INP are Logical functions; POKE and ouT
are subroutines. PEEK and POKE allow direct access
to any memory location. PEEK (a) returns the
contents of the memory location specified by a.
CALL POKE(al1,a2) causes the contents of the memory
location specified by al to be replaced by the
contents of a2. INP and OUT allow direct access to
the I/0 ports. INP (a) does an input from port a
and returns the 8-bit value input. CALL OUT (a1,a2)
outputs the value of a2 to the port specified by

al,
Examples:)
A1 = B+FLOAT (I7)
MAGNI = ABS (KBAR)
| PDIF = DIM(C,D)
< §3 = SIN(T12)

ROOT = (=B+SQRT(B**2-4.*A*C))/
1 (2.%A)

U

FORTRAN-80 Reference Manual

TABLE 9-1

Intrinsic Functions

Function Name Definition
ABS lal

IABS

DABS

AINT Sign of a times lar-
INT gest integer <= |al
IDINT

AMOD al(mod a2)
MOD .

AMAXO Max(atl,a2,...)
AMAX1
MAXO
MAX1
DMAX1

AMINO Min(al,a2,...)
AMIN1
MINO
MIN1
DMIN1

FLOAT Conversion from
Integer to Real

IFIX Conversion from
Real to Integer

SIGN Sign of a2 times l|all

ISIGN
DSIGN

DIM al - Min(al1,a2)
IDIM
SNGL

DBLE

Types
Argument Function
Real Real
Integer Integer
Double Double
Real Real
Real Integer
Double Integer
Real Real
Integer Integer
Integer Real
Real Real
Integer Integer
Real Integer
Double Double
Integer Real
Real ' Real
Integer Integer
Real Integer
Double Double
Integer Real
Real Integer
Real Real
Integer Integer
Double Double
Real Real
Integer Integer
Double Real
Real Double

Page 86

FORTRAN-80 Reference Manual Page 87

o N -

TABLE 9=~2

* Basic External Functions

Number
of Type
Name Arguments Definition Argument Function

- EXP 1 e**a Real Real
DEXP 1 Double Double

ALOG 1 1n (a) Real Real
DLOG 1 Double Double

ALOG10 1 log10(a) Real Real
DLOG10 1 Double Double

’ SIN 1 . s8in (a) Real) Real
DSIN 1 Double Double

cos 1 cos (a) Real Real
DCOS 1 . Double Double

R TANH 1 tanh (a) Real Real

SQRT 1 (a) ** 1/2 Real Real
DSQRT 1 Double Double

ATAN 1 arctan (a) Real Real
DATAN 1 Double Double

ATAN2 2 arctan (a1/a2) Real Real
DATAN2 2 Double Double
DMOD 2 atl(mod a2) Double Double

FORTRAN-80 Reference Manual ‘ Page 88 .

9.4

9.5

FUNCTION SUBPROGRAMS

A program unit which begins with a FUNCTION
statement is called a FUNCTION subprogram.

A FUNCTION statement has one of the following
forms:

+ FUNCTION f(al,a2,...an)

or

FUNCTION f£(al,a2,...an)

where:

1. ¢t is either INTEGER, REAL, DOUBLE PRECISION oT
LOGICAL or is empty as shown in the second
form.

2. £ is the name of the FUNCTION subprogram.

3. The ai are dummy arguments of which there must
be at least one and which represent variable

names, array names or dummy names of SUBROUTINE
or other FUNCTION subprograms.

CONSTRUCTION OF FUNCTION SUBPROGRAMS

Construction of FUNCTION subprograms must comply
with the following restrictions: ‘

1. The FUNCTION statement must be the first
statement of the program unit.

2. Within the FUNCTION subprogram, the FUNCTION
name must appear at least once on the left side
of the eguality sign of an assignment statement
or as an item in the input list of an input
statement. This defines the value of the
FUNCTION so that it may pe returned to the
calling program.

Additional values may be returned toO the
calling program through assignment of values to
dummy arguments.

- Lx

-
B

FORTRAN-80 Reference Manual Page 89

Examgle:
FUNCTION 27(A,B,C)

27 = 5.*(A-B) + SQRT(C)

C REDEFINE ARGUMENT
B=B+17

The names in the dummy argument list may not appear
in .EQUIVALENCE, COMMON or DATA statements in the
FUNCTION subprogram.

I1f a dummy argument is an array name, ther an array
declarator must appear in the subprogram with
dimensioning information consistant with that in
the calling program.

A FUNCTION subprogram may contain any definec
FORTRAN statements other than BLOCK DATA
statements, SUBROUTINE statements, another FUNCTION
statement oOr any statement which references either
the FUNCTION being defined ' or another subprogram
that references the FUNCTION being defined.

The logical termination of a FUNCTION subprogram is
a RETURN statement and there must be at least one
of them,

A FUNCTION subprogram must physically terminace
with an END statement.

"

L iy

fist =

o

FORTRAN~80 Reference Manual Page 90

9.6

Examgle:

FUNCTION SUM (BARY,I,J)
DIMENSION BARY (10,20)
SUM = 0.0
DO 8 K=1,1I
DO8 M = 1,J

8 SUM = SUM + BARY(K,M)
RETURN
END

REFERENCING A FUNCTION SUBPROGRAM

FUNCTION subprograms are called whenever he
FUNCTION name, accompanied by an argument list, is
used as an operand in an expression. Such
references take the following form:

f(a1,a2'..o'an)

where £ is a FUNCTION name and the ai are actual
arguments. Parentheses must be present in the form
shown.

The arguments ai must agree in type, order and
number with the dummy arguments in the FUNCTION
statement of the called FUNCTION subprogram. They
may be any of the following:

1. A variable name.

2. An array element name.

3. An array name.

4., An expression.

S. A SUBROUTINE or FUNCTION subprogram name.
6. A Hollerith or Literal constant.

If an ai is a subprogram name, that name must have
previously been distinguished from ordinary
variables by appearing in an EXTERNAL statement and
the corresponding dummy arguments in the called
FUNCTION subprograms must be used in subprogram
raferences.

If ai is a Hollerith or Literal constant, the
corresponding dummy variable should encompa 3
enough storage units to correspond exactly _to the

amount of storage needed by the constant.

When a FUNCTION subprogram is called, program

ey

W@

FORTRAN-80 Reference Manual A Page 91
: control goes to the first executable statement
7’4 _ . following the FUNCTION statement.

The following examples show references to FUNCTION
subprograms.

210 = FT1+27(D,T3,RHO)

‘ DIMENSION DAT(5,5)

S1 = TOT1 + SUM(DAT,S,S)

9.7 SUBROUTINE SUBPROGRAMS

A program unit which begins with a SUBROUTINE
statement is called a SUBROUTINE subprogram. The
SUBROUTINE statement has one of the following
forms:

SUBROUTINE s (a1,a2,...,an)
or
SUBROUTINE s

where s is the name of the SUBROUTINE subprogram
and each ai is a dummy argument which represents a
variable or array name or another SUBROUTINE or
FUNCTION name.

9.8 CONSTRUCTION OF SUBROUTINE SUBPROGRAMS

1. The SUBROUTINE statement must be the first statement
of the subprogram.

2. The SUBROUTINE subprogram name must not appear in
any statement other than the initial SUBROUTINE
statement.

3. The dummy argument names 'must not appear in
EQUIVALENCE, COMMON or DATA statements in the
subprogram. .

4. If a dummy argument is an array name then an array
declarator must appear in the subprogram with
dimensioning information confistant with that in the

calling program. |
|

k §., I1f any of the dummy arguments represent values that
4 are to be determined by the SUBROUTINE subprogran
= and returneé to the calling program, these dummy

R

sy

FORTRAN-80 Reference Manual , Page 92

9.9

7.

10.

arguments must appear within the subprogram on the
left side of the egquality sign in a replacement
statement, in the input list of an input statement
or as a parameter within a subprogram reference.

A SUBROUTINE may contain any FORTRAN statements
other than BLOCK DATA statements, FUNCTION
statements, another SUBROUTINE statement, a PROGRAM
statement or any statement which references the
SUBROUTINE subprogram being defined or another
subprogram which references the SUBROUTINE
subprogram being defined.

A SUBROUTINE subprogram may contain any number of
RETURN statements. It must have at least one.

The RETURN statement(s) is the logical termination
point of the subprogran.

The physical termination of a SUBROUTINE subprogram
is an END statement.

If an actual argument transmitted to a SUBROUTINE
subprogram by the calling program is the name of a
SUBROUTINE or FUNCTION subprogram, the corresponding
dummy argument must be used in the called SUBROUTINE
subprogram as a subprogram reference.

Examgle:
C SUBROUTINE TO COUNT POSITIVE ELEMENTS

C IN AN ARRAY
: SUBROUTINE COUNT P (ARRY,I,CNT)
DIMENSION ARRY (7)
CNT = 0
DO 9 J=1,1I
IF (ARRY (J))9,5,5
9 CONTINUE
RETURN
5 CNT = CNT+1.0
GO TO 9
END

REFERENCING A SUBROUTINE SUBPROGRAM

A SUBROUTINE subprogram may be called by using a
CALL statement. A CALL statement has one of the
following forms:

CALL s(al,a2,...,an) o :

or

FORTRAN-80 Reference Manual Page 93

1 CALL s

where s is a SUBROUTINE subprogram name anc =.¢ ai
are the actual arguments to be used by the
subprogram. The ai must agree in type, order and
number with the corresponding dummy arguments in
the subprogram=-defining SUBROUTINE statement.

The arguments in a CALL statement must comply with
the following rules:

1. FUNCTION and SUBROUTINE names appearing in the
argument list must have previously appeared 1in
an EXTERNAL statement.

2. If the called SUBROUTINE subprogram contains a
variable array declarator, then the CALL
statement must contain the actual name of the
array and the actual dimension specifications
as arguments.

3. 1f an item in the SUBROUTINE subprogram dummy
argument 1list is an array, the corresponding
item in the CALL statement argument list must
be an array.

'When a SUBROUTINE subprogram is called, progranm
control goes to the first executable statement
following the SUBROUTINE statement.

Example:

DIMENSION DATA(10)

C THE STATEMENT BELOW CALLS THE
Cc SUBROUTINE IN THE PREVIOUS PARAGRAPH
c \

CALL COUNTP (DATA, 10,CPOS)

)
9,10 RETURN FROM FUNCTION AND SUBROUTINE SUBPROGRAMS

The logical termination of a FUNCTION or SUBROUTINE
subprogram is a RETURN statement which transfers
control back to the calling program. The general
form of the RETURN statement is simply the word

RETURN S

!

The following'rules govern the use of the RETURN
statement: .o -

-

e as— o o — =

- e - —— o ——— % ww—-

FORTRAN-80 Reference Manual Page 94

1. There must be at least one RETURN statement in
each SUBROUTINE or FUNCTION subprogram.

2. RETURN from a FUNCTION subprogram is to the
instruction sequence of the calling program
following the FUNCTION reference.

3. RETURN from a SUBROUTINE subprogram is to the
next executable statement in the calling
program which would logically follow the CALL
statement.

4. Upon return from a FUNCTION subprogram the
single-valued result of the subprogram is
available to the evaluation of the expression
from which the FUNCTION call was made.

5. Upon return from a SUBROUTINE subprogram the
values assigned to the arguments in the
SUBROUTINE are available for use by the calling
program. .

Example:
Calling Program Unit

CALL SUBR(Z9,B7,R1)

Called Program Unit

SUBROUTINE SUBR(A,B,C)
READ(3,7) B
A = B**C
RETURN :
7 FORMAT (F9.2) ‘ '
END

In this ekample, 29 and B7 are made available to
the calling program when the RETURN occurs.

PROCESSING ARRAYS IN SUBPROGRAMS |

If a calling program passes an Jrray name to a
subprogram, the subprogram must contain the
dimension information pertinent to the array. A
subprogram must contain array declarators if any of
its dummy arguments represent arrays Or array

FORTRAN-80 Reference Manual Page 95

g elements.

For example, a FUNCTION subprogram designec to
compute the average of the elements of any one

.

dimension array might be the folowing:

Calling Program Unit

DIMENSION 21(50),22(25)

A1 = AVG(Z1,50)

A2 = A1-AVG(22,25)

Called Program Unit

FUNCTION AVG(ARG,I)
DIMENSION ARG (50)
SuM = 0.0
Do 20 J=1,1
20 SUM = SUM + ARG(J)
AVG = SUM/FLOAT(I)
RETURN .
END

Note that actual arrays to be processed by the
FUNCTION subprogram are dimensioned in the calling
program and the array names and their actual
dimensions are transmitted to the FUNCTION
subprogram by the FUNCTION subprogram reference.
The FUNCTION subprogram itself contains a dummy
array and specifies an array declarator.

Dimensioning information may also be passed to the
subprogram in the paramater list. For example:
. |

- e - —— -

FORTRAN-80 Reference Manual Page 96

9.12

Calling Program Unit
DIMENSION A(3,4,5)

CALL SUBR(A,3,4,5)

END
Called Program Unit

SUBROUTINE SUBR(X,I,J,K)
DIMENSION X(I,J,K)

RETURN

END
I+ is valid to use variable dimensions onl when
the array name and all of the variable dimensions
are dummy arguments. The variable dimensions must
be type Integer. It is invalid to change the

values of any of the variable dimensions within the
called program.

BLOCK DATA SUBPROGRAMS

A BLOCKX DATA subprogranm has as its only purpose the
initialization of data in a COMMON block during
loading of a FORTRAN object program. BLOCK DATA
subprograms begin with a BLOCK DATA statement of
the following form:

BLOCK DATA [subprogram-name]

and end with an END statement. ' Such subprograms
may contain only Type, EQUIVALENCE, DATA, COMMON
and DIMENSION statements and are subject to the
following considerations:

1. If any element in a COMMON block is to be
initialized, all elements of the block must be
listed in the COMMON statement even though they
might not all be initialized.

2. 1Initialization of data in more than one COMMON
block may be accomplished in cone BLQCK DATA
subprogram. Co :

(FORTRAN-80 Reference Manual Page 97

RN 3. There may be more than one BLOCK DATA
subprogram loaded at any given time.

L d

4. Any particular COMMON block item should only be
initialized by one program unit.

Example:

BLOCK DATA

LOGICAL Al
COMMON/BETA/B (3,3) /GAM/C (4)
COMMON/ALPHA/A1,C,E,D |
DATA B/1.1,2.5,3.8,3*4.96,
12%0.52,1.1/,C/1.2E0,3*4.0/
DATA A1/.TRUE/,E/-5.6/

SRR

FORTRAN-80 Reference Manual Page 98

APPENDIX A

Language Extensions and Restrictions

The FORTRAN-80 language includes the following extensions to
ANSI Standard FORTRAN (X3.9-1966).

1.

2.

4.
5.

9.

If c is used in a 'STOP c¢' or 'PAUSE c' statement,
c may be any six ASCII characters.

Error and End-of-File branches may be specified in
READ and WRITE statements using the ERR= and END=
options.

The standard subprograms PEEK, POKE, INP, and OUT
have been added to the FORTRAN library.

Statement functions may use subscripted variables.

Hexadecimal constants may be used wherever Integer
constants are normally allowed.

The literal form of Hollerith data (character
string Letween apostrophe characters) is permitted
in place of the standard nH form.

Holleriths and Literals are allowed in expressions
in place of Integer constants.

.
There is no restriction to the number of
continuation lines.

Mixed mode expressions and assignments are allowed,
and conversions are done automatically.

FORTRAN-80 places the following restrictions upon Standard

FORTRAN.

1.

2'

The COMPLEX data type is not implemented. It may
be incluced in a future release.

The specification statements must appear in the
following order:

1. PROGEAM, SUBROUTINE, FUNCTION, BLOCK DATA
2. Type, EXTERNAL, DIMENSION \
3. COMMON

4. EQUIVALENCE o ..

FORTRAN-80 Reference Manual Page 99

S. DATA

6. Statement Functions

3. A different amount of computer memory is allocated
for each of the data types: Integer, Real, Double
Precision, Logical.

4. The equal sign of a replacement statement and the
first comma of a DO statement must appear on the
initial statement line.

Descriptions of these language extensions and restrictions
are included at the appropriate points in the text of this
document.

- — . = . e e e e mm @ - - -— . —

FORTRAN-80 Reference Manual Page 100

APPENDIX B
I/0 Interface =

Input/Output operations are table-dispatched to the driver
routine for the proper Logical Unit Number. $LUNTB is the
dispatch table. It contains one 2-byte driver address for
each possible LUN. It also has a one-byte entry at the
beginning, which contains the maximum LUN plus one. The
initial run-time package provides for 10 LUN's (1 = 10), all
of which correspond to the TTY,. Any of these may be
redefined by the user, or more added, simply by changing the
appropriate entries in $LUNTB and adding more drivers. The
runtime system uses LUN 3 for errors and other user
communication. Therefore, LUN 3 should correspond to the
operator console. The initial structure of SLUNTB is shown
in the listings following this appendix.
The device drivers also contain local dispatch tables. Note
that $LUNTB contains one address for each device, yet there
are really seven possible operations per device:

1) Formatted Read

2) Formatted Write

3) Binary Read

4) Binary Write o

S) Rewind

6) Backspace

7) Endfile
Each device driver contains up to seven routines. The

starting addresses of each of these seven routines are
placed at the beginning of the driver, in the exact order
listed above. The entry in $LUNTB then points to this local
table, and the runtime system indexes inte it to get the
address of the appropriate routine to handle the requested
1/0 operation.

The following conventions apply to the individual 1I/0
routines:

1. Location $BF contains the data puffer address for
READs and WRITEs.

2. For a WRITE, the number of bytes to write 1is 1in
location $BL.

3. For a READ, the number of bytes read should be
returned in $BL.

FORTRAN-80 Reference Manual Page 101

{ 4. All 1/0 operations set the condition codes before
. exit to indicate an error condition, end-of-file
condition, or normal return:

a) Cy=1, Z=don't care = I/0 error
b) CY=0, Z=0 = end-of~file encountered
c) CY=0, 2=1 - normal return

The runtime system checks the condition codes after
calling the driver. 1f they indicate a non-normal
condition, control is passed to the label specifiec
by "ERR=" oOr "END=" or, if no label is specified, 2
fatal error results.

S. S$IOERR is a global routine which prints an "ILLEGAL
I/0 OPERATION" message (non-fatal). This routine
may be wused if there are some operations not
allowed on a particular device (i.e. Binary 1/0 on
a TTY).

NOTE

The 1/0 buffer has a fixed maximum length
of 132 bytes unless it is changed at
ingtallation time. I1f a driver allows an
input operation to. write past the end of
the buffer, essential runtime variables may
be affected. The consequences are
unpredictable.

The listings following this appendix contain an example
driver for a TTY. REWIND, BACKSPACE, and ENDFILE are
implemented as No=-Ops and Binary I/0 as an error. This 1is
the TTY driver provided with the runtime package.

-3

STTYOT

STTYIN
&D TOO LONG
£ OPERATIONS ARE

NO-OPS FOR TTY

mm

RWDE
2 nalé g
o Gzaatt
8 fiitaied

R,S$B
;
i
:

ILLEGAL DPERATIONS
(PRINT ERROR AND RETURN)

’
.
’
.
?
3
’
.
’
(3
s
.
’

LINE FEEDS

FF PARITY

; IGIORE
;3A

VE
. m- C
L

3
G
ON

READ
RUFFER LENGTH

INPUT A CHAR

AND O

.
]
.
'
)
’
.
’
’

IT
BAR POSIT IN BUFFER

Y 1 3YTE

’
’
.
’

;PJT IT IN 3UFFER
; INCREMENT S8L

.
[
3
[
[}
’
[

15 DECIYAL 128
CHAR

s TMPIT RECORD TOO LONG
LEAR FLAGS

:SBL
:GET NEXT

.
.
.
L}
1]
4
[
.
.
’

G E LTEENSE EE EE A g g
5 BnESRUSSRE . BE B BlBLocERRs Bokre Be ametld 2
0 .
~
-4 >4
[- an w [+ 9 wI -
B EREaszmazad BOER pacdn B flonsxtid . Saakias

PAGE

® - as - & " . - []
. o DD I~ 2 ™ - —t
I] o9 ~ [o~ ~ ™
=3 AR LLO VO D 20 (Slalo) @
D AN G0) 2 QA VD W O OO [}
@ e AAROD
GBG.UQOBHM . o OO LN 6%.&917 JMw?.EB DE&.DZMQ .ﬁ. -
ADVOIRD (818 MO G U NN ot 0§~ 4 LI L U L U L OO
DNROCITOD LT WA QML £ UWACNN - MU QO EHL DN OF NG 2 ONN

SADOONAIRAIRD
VIDRVRNIRDVID
OHOSVRPINND

et A A A IO IO N S BV e B2 Tha Toa 2oa a5 b A0k o 4
QINDODVRDRNDLIAINTINIMN EYCITICICITICICT I D
QOPOADINEIAINC LSt T TR R I AR Lo e L R R

)|

PAGE

MACS0 1.0

$ORV

18 ARE DSK
(NICATIONS WINIT 4
3 FOR NOW

S LPT

+ 1

INT TO

P

N
N
D1c
MAX LN

.
’

LUONTB

DRV3

13
SDRV3

ADDRESSES FOR LUN'S 1 THROUGH 18
rHeY ALL FO

1
1
@

y%
LPT

ENT *
DRIVER
ggg

)
EXT
o8
IFF
DW
ENDIF
IFT
EXT
oW
ENDIF
DW
IFF
Dw
ENDI
IFT
EXT
OW
ENDIF
oW
IFF
DA
DW
DwW
DW
oW
ENDIF
IFT
EXT
DW
oA
DA
DW
DW
ENDIF
END

B 5. :

" . & = . 'R

D 2 ~ N €~ MmO .~

] Qe 9 9 (-] DD

03 QR D 9D (-1 0O

(-1 ® 9 9 2 D0INO
—~—t DUDAM AN T N NOVO MAAMO LAWY
D22 DOMOY DINDRIIRNA no 3 TIMICITI At
SV DROHDVY DIRNIIERAIID QD €2 ITRIAICIIINIATIT)

AOD DNRID DO RIDND SII) DI°ITINMAWVDNITI

2

PAGE

MACEE 1.0

SLUNTB 0022’

IN BUFFER

TR
™
-

UFFER
ADDRESS
RST CHAR

NEXT CHAR
ENT PTR

ECREMENT LENGTH
IT
FORM FEED
EED

SAVE IT
T
FI

CR
ouT
GET
AVE CHAR COLN

S
GET

EMPTY 3
BUFFER
:NO MORE LINC FEEDS

:NO MORE LINE FEEDS

;LF

GET LENGTH BACK
: INCREMENT

°
’
.
’
.
’
.
’
.
!
°
’
.
!
°
’
.
’
.
’
.
[

0
2
0
)

PAGE

MACBO 1.0

ggeaggeaageaegﬂuoggg nD

]
Q
[~

0o

«
(¢4
[
[~
=2 [LS1.)

®© £ QIO 6L
Cn‘ (W18 o (W

OI~ MU~
D e L s e A ALl A
M OIGEACDRRNQLTOTD
SOHOAINORNGVIOEVIRC VAAD

s

- K- ™ -

< OV 'u n
W > N €~

AT TATal IATa O]
L OMOUMU 2

WO L

DD

QOOANVOANNCVR
CRARRNNORNTVRRD

O RN FUNOL ~ DOV

- .

o
~ 0

eleaehﬂﬂugeee a
MDA SR NOMAE®

W EINAMON LM Q—~Q
Qi)MUGMNO LI~ NOGM

*
'

C3 g7

OOWOVWOOIS = (O~ T~~~ -~ 0 MM

(<P ON MU O WLCICN T

€ ON(

.5»51566666&6-_; (~g~1~0~(~31~(~{~ 00000
ADREOPOIVRQAMDRARNAIDD
HORVRRAVONADIDROIQID

¢

3

PAGE

MAC30 1.0

FORTRAN-80 Reference Manual Page 102
APPENDIX C

Subprogram Linkages

This appendix defines a normal subprogram call as generated
by the FORTRAN compiler. ' It is included to facilitate
linkages between FORTRAN programs and those written in other
languages, such as 8080 Assembly.

A subprogram reference with no parameters generates a simple
“CALL®" instruction. The corresponding subprogram should
return via a simple "REZT." (CALL and RET are 8080 opcodes =
see the assembly maiual or 8080 reference manual for
explanations.)

A subprogram reference with parameters results in a somewhat
more complex calling s:quence. Parameters are always passed
by reference (i.e., th2 thing passed is actually the address
of the low byte of the actual argument). Therefore,
parameters always OCCuly two bytes each, regardless of type.

The method of passing the parameters depends upon the number
of parameters to pass:

1. 1If the number of parameters is less than or egual
to 3, they are passed in the registers. Parameter
1 will be in HL, 2 in DE (if present), and 3 in BC
(if present).

2. 1f the number of parameters is greater than 3, they
are passed as follows: .

1. Parameter 1 in HL.
2. Parameter 2 in DE.

3. Parameters 3 through n in a contiguous data
block. BC will point to the low byte of this
data block (i.e., to the low byte of parameter
3). :

Note that, with this scheme, the subprogram must know how
many parameters to expect in order to find then.
Conversely, the calling prcgram is responsible for passing
the correct number of parameters. Neither the compiler nor
the runtime system checks for the correct number of
parameters.

If the subprogram expects more than 3 paraheters, and needs
to transfer them to a local data area, there is a system

s —— - - ¢ e e e mam - ——— a ——— —— e e e —————— ———— - —— - e - =

FORTRAN-80 Reference Manual Page 103

subroutine which will perform this transfer. This argument
transfer routine is named $AT, and is called with HL
pointing to the local data area, BC pointing to the third
parameter, and A containing the number of arguments to
transfer (i.e., the total number of arguments minus 2). The
subprogram is responsible for saving the first two
parameters before calling $AT. For example, if a subprogram
expects S5 parameters, it should look like:

SUBR: SHLD P1 ; SAVE PARAMETER 1
XCHG
SHLD P2 ; SAVE PARAMETER 2
MVI A,3 ;NO. OF PARAMETERS LEFT
LXI H,P3 ; POINTER TO LOCAL AREA
CALL $AT ; TRANSFER THE OTHER 3 PARAMETERS

{Body of subprogram]

.

RET ; RETURN TO CALLER
P1: DS 2 ; SPACE FOR PARAMETER 1
P2: DS 2 : SPACE FOR PARAMETER 2
P3: DS 6 s SPACE FOR PARAMETERS 3-5

when accessing parameters in a subprogram, don't forget that
they are pointers to the actual arguments passed.

NOTE

It is entirely up to ° the
programmer to see to it that
the arguments in the calling
program match in number, type,
and length with the parameters
expected by the subprogram.
This applies to FORTRAN
subprograms, as well as tlose
written in assembly languace.

FORTRAN Functions (Section 9) return their values in
registers Or memory depending upon the type. Logical
results are returned in (A), Integers in (HL), Reals in
memory at $AC, Double Precision in memory at $DAC. $AC and
$DAC are the addresses of the low bytes of the mantissas.

FORTRAN-80 Reference Manual Page 104

APPENDIX D

ASCII CHARACTER CODES

DECIMAL CHAR. DECIMAL CHAR. DECIMAL CHAR.
000 NUL 043 + 086 v
001 SOH 044 o, 087 W
002 sTX 045 - 088 X

. 003 ETX 046 . 089 Y
004 EOT 047 / 090 2
005 ENQ 048 0 091 {
006 ACK 049 1 092 \
007 BEL 050 2 093]
008 BS 051 3 094 A (or®%)
009 HT 052 4 095 < (ore)
010 LF 053 s 096 !
011 VT 054 6 097 a
012 FF 055 7 098 b
013 CR 056 8 p9s c
014 SO 057] 100 ad
015 SI, 058 : 101 e
016 DLE 059 : 102 £
017 pC1 060 < 103 g
018 DC2 061 = 104 h
019 DC3 062 > 105 i

s 020 DC4 063 ? 106 j
021 NAK 064 e 107 k
022 SYN 065 A 108 1l
023 ETB 066 B 109 m
024 CAN 067 (o] 110 n
025 EM 068 D 111 ()
026 SUB 069 E 112 P
027 ESCAPE 070 F 113 q
028 FS : 071 G 114 r
029 GS 072 H 115 s
030 RS 073 ps 116 t
o us 074 J 117 u
032 SPACE 075 X 118 v
033 ! 076 o 119 w
034 " 077 M | 120 X
035 ¥ 078 N ' 121 Y
036 $ 079 0 ! 122 P
037 v 080 P 123 {
038 & 081 Q 124 |
039 ' 082 R 125 \
040 (083 s i 126 ~
041) 084 T 3 127 DEL
042 * 085 U \

LF=Line Feed FFsForm Feed CR=Carriage Return DEL=Rubout

FORTRAN-80 Reference Manual Page 1035

APPENDIX E

FORTRAN-80 Library Subroutines

The FORTRAN-80 library contains a number of subroutines that
may be referenced by the user from FORTRAN or assembly
programs. In the following descriptions, $AC refers to the
floating accumulator; $AC is the address of the low byte of
the mantissa. $AC+3 is the address of the exponent. $DAC
refers to the DOUBLE PRECISION accumulator; $DAC is the
address of the low byte of the mantissa. $DAC+7 is the
address of the DOUBLE PRECISION exponent.

All arithmetic routines (addition, subtraction,
multiplication, division, exponentiation) adhere to the
following calling conventions.

1. Argument 1 is passed in the registers:
Integer in (HL] .
Real in $AC
Double in $DAC

2. Argument 2 is passed either in registers, oI in
memory depencing upon the type:

a. Integers are passed in (L], or (DE] if
(HL] contains Argument 1.

b. Real and Double Precision values are
passed in memory pointed to by (HL] .
([HL] points to the low byte of the
mantissa.)

FORTRAN=-80 Reference Manual

The following
Library:

Function

Addition

Division

Exponentiation

Multiplication

Subtraction

arithmetic

Name

$AA
$AB
$AQ
$AR
$AU

$D9
$DA
$DB
$DQ
$DR
$DU

$E9
$EA
$EB
$EQ
$ER
$EU

$M9
$MA
$MB
$MQ
$MR
$MU

$SA
$SB
$sQ
$SR
§$SU

routines

Argument 1 Type

Page 106

contained in

Argument 2 Type

Real
Real
Double
Double
Double

Integer
Real
Real
Double
Double
Double

Integer
Real
Real
Double
Double
Dcuble

Integer
Real
Real
Double
Double
Double

Real
Real
Double
Double
Double

Integer
Real
Integer
Real
Double

Integer
Integer
Real
Integer
Real
Double

Integer
Integer
Real
Integer
Real
Double

Integer
Integer
Real
Integer
Real
Double

Integer
Real
Integer
Real
Double

FORTRAN-80 Reference Manual page 107

pdditional Library routines are provided for converting
between Vvalue types. Arguments are always passed to'and
returned by these conversion routines in the appropriate

registers:
Logical in (Al
Integer in (HL]
Real in $AC

‘pouble in $DAC

Name Function

$CA Integer toO Real
$ccC Integer tO Double
$CH Real to Integer
$CJ Real to Logical
$CK Real to Double
$cX Double to Integer
$CY Double toO Real

$C2Z Double toO Logical

FORTRAN-80 Reference Manual Page 108

v INDEX
Arithmetic Expression . o « 25-26, 47
ArithmetiC IF o« o« « o o o o o 44, 47, 49
Arithmetic Operators . . « « o 8
Atray e ® o e o o e o o o olo 14' 20' 34-35, 37’38, ‘0-41,
Array Declarator . . « o« o « o 20
Array Element e « 14, 20, 27, 32, 39
ASCII Character Codes e s o o 104
ASSIGN [] *® L] * [] - [] L] [] L] * * ‘4' 46
AsSigned GOTO e o o o e o o o 44~-45
BACKSPACE . . [] L] L] . [] L e . 60
BLOCK DATR « o o o o o o o o o 34, 37, 92, 96
CALL * L] [] L] [] [] L] [] [] [o] * 44' 53' 92
Character Se€t o « o o o o o o 7
CharacterisSticC o« « o« o o o o o 23
Comment Line « .6 o ¢ o o ¢ o o 9
COMMON « o o o o o o o o o o o 34, 37, 39-41, 89, 91, 96
Computed GOTO e o e o o o o o 44-45
CONSLANE o o o o ¢ o o o o o o 14-15

R Continuation e ®© & ®© ® o e o o 9; 12

CONTINUE e o © & o e & & o o o ‘4' 51
Control Statements . « « o o o 44
DATA e« o o o e ® o o ® o & ¢ o 34, ‘1, 89' 91' 96
Data Representation . « « o . 14
Data StOXage . o« o o o o o o o 21
DECODE [] L] L] [] * [] L] [] [] ® L] [] 61
DIMENSION e o © o o o o o o o 20' 34"37, 96
Disk FileS ¢ ¢ ¢ ¢ o o o o o o 89
DO o @ e o © © o o o o “, ‘7’49
DO Impli@d Li’t e o 5 o o o o 63
Double precision « « o o o o o 14
Dummy e o ® o o s ® o o o o o 91=-93, 95
ENCODE . [] [] L] L] [] [) L] [L] L] [] 61 1
END L] [] L] [] ® . * e L} L] [] * * 53' 89' 92' 96
END LiN€ « o o o o o o o s o o 1
ENDFILE [] [[] [] [L] ® [] [] [] L] 60 '
EQUIVALENCE e © ®© © e o o o o 34, 39-‘10 891 911 96
Bxecutable e o o ®© e o o © o o 13' 34' 44
ExpreSSion e o o e o o o o o o 25-26, 31‘32
Extended Range e ®© o © o o o o so
EXTERNAL ¢ o o ¢ o o o o o o o 34, 37, 90, 93
External Functions . « « « « o« 87
Field Descriptors .« « « o o o 65

FORMAT e o ® o o o o & e o s o 55’57, 650 69' 71= 751 77 -80
Formatted READ . 54

—— o ——— e

“INP . .

Formatted WRITE
FUNCTION o o o o o o

GOTO [] . [] [] * L] L d ®

Hexadecimal
Hollerith e - [] []]

I/O [® -
I/0 List .
IF « « o o
Index . .
Initial Lin

e o (De o o o
T e o o s ¢ o o
e o o o o o »

Integer o o

Intrinsic Functions

Label . L] [] L] * L] e
Library Function . .
Library Subroutines

Line Format =« o« o o
List Item =« o o ¢ o
Literal .« ¢ o o o o
Logical ¢ « ¢ o o o
Logical Expression .
Logical IFP ¢ o o o o
Logical Operator . .
Logical Unit Number
LUN L] L] [] . * ® *® []

Mantissa ¢« o o o o o
NestEd ® [] L] ® * L 2 L)

Non-executable . . .
Numeric Conversions

Operand o« « o ¢ o -
Operator o« « o o o =«
OUT . . L] L] [] L] [] .
PAUSE « o s o o o =
PEEK o+ ¢ o o o o o o
POKB . L] [] L] L] L] L] .
PROG RAM . L] . L] L] L]

Range [] L] L L] A‘ . -
READ L] . L] . L] L L J -
Real L . L] L] L] * L] -

Relational Expression

Relatiocnal Operator

Replacement Statement

RETUR-N - L] - L] L] L] .
REwIND L] ® - L] . L] L

Scale FactOr « « o

Specification Statement

Statement Function .

e © » & o & o O

L] L] L[] e o . L] L]

.

*® L] [] L] * [] . L]

L] [I) L] . . L L J

.0-.0..0.00.

L] L [] []

L] o ¢ . » L] L] L]

L9

[) e o L[] L] L] [] L]

5

7

34, 37, 82,

44, 49

’
’

21, 31,

88-95

42

15, 20-21, 31
71=-72, 90

54, 100

9

’

12, 44-4

82, 84
105

9

62
9’ 20"21' 31" 42' 72’ 90
14, 19, 23,
27, 30, 48
44, 47, 49

54, S8, 100
s4, 58, 100

34, 83, 92

5, 48

73

» 42,

5()' 58' 65, 74'.78-80
14, 19, 23

49, 53'

89,

92-94

56,

I

ST‘OP] L] L ° L] ®
StLOEAYE o o o o
Storage Format .
Storage Unit . o
Subprogram o« o e
SUBROUTINE o . &
Subscript o o
Subscript Express

g0 ® © © © © o
Je o &8 o ¢ o o

o

TYPE® o o s o o o o @
Type Statement o « o

Unconditional GOTO .
Unformatted I/0 o

Variable « o o o o o

WRITE @ e e L (] L] e

9 8 ° L] [o [} ®

[

® ® 6 o © © @ ©

& & © O ® o & &

® ® L] L] L] [L] L]

L] L 3 L] L] L. ® o ®

Iy
s

14

21,
37,
34,
20,
21,

S¢
35

44
58

14,

23, 39

83, B2, 88-%6, 102
37, 53, 82, B89-54
27

27

1%, 32, 38, S0

57‘”5%;» 65’ 744 78”50

P -

11 ©

MICROSOET
utility seftware
manual

I

@ oy

SECTION 1

1.1

1.2

1’3

- b
L] L]
U

Microsoft
Utility Software Manual

CONTENTS
MACRO-BO Assembler o e v. e © e o e o o

Running MACRO=80 ¢ « « o o o o o
1.1.1 Command Format « « « ¢ =«
1.1.2 Input/Output Devices . . -
Format of MACRO-80 Source Files

1 Statements e« « o s o o o
2 Sym-bOJ.s [L] L * . *
3 Numeric Constants
4
e
1

. L] L] L] .

Strings o« ¢ o o o
ssion Evaluation . .
Arithmetic and Logi
2 Modes o o o o o o
.3.3 Externals .
pcodes as Operands
eudo Operations .
ASEG L] L] L] L]
COMMON . .«
CSEG o o o o
Define Byte
Define Charac
Define Space
DSEG o ¢ o o
Define Word
END o o o
ENTRY/PUBLIC
EQU . L) . °
EXT/EXTRN .
NAME « ¢ o+ o
Define Origin
PAGE * L] L] L]
SET .« o«
SUBTTL .
TITLE .
.COMMENT
« PRINTX
+RADIX .
«REQUEST
L3 zao L] L]
.8080 . .
Conditional Pseudo Operations
Listing Control Pseudo Operations
Relocation Pseudo Operations .
Relocation Before Loading . .

al Operat

e o o6 D s o o o o o 0o o o

e o o o o o o

L
L]
c
*
L]
.
[}
L]
]
L]
L d
.

-.dd....... e o

e @ 0 ¢ ¢ o o o (Yo o o o s o

ulU!U!U!U!-O"OO"'
e s e s 0 e o LULKILVLVLNLWLV ALY

L]
P T P e

O\DO&IOUAUN-&OW(D\IO\U\#UNJ

.
.
L]
L]
.
[
.
L]
L[]
L]
.
L
L]
.
L]
L]
.
L]
L]
.
*
L]
*
L
L]
L]
®

[[
L] L]
L] .
L] .
.]
L] L
L] .
L []
L] L]
. L]
L] [)
L] L]
. .
L] L]
. []
. °
L] L]
[] .
L] L]
L] []
. .
L] L
] .
* .
. L]
L] L]
. .

L] L] L] L] L] . [] L] [] L] L] L] . . . L] L] L] L] L] L] L] * L]

[4
L]
L]
L4
[
L 2
L]
.
*
L
*
L
[
[
L]
-
.

.
®
[]
.
L]
.
.
.
L]

. L] L] L] L] L] . []
[] L] . - . L] L] L] . L] L] L] [] [] L . L L] L] L] L] . L L] .

*
*
L d
L]
®
L]
L]
L]
.

L]
L
L
L]
L]
.
.
L]
*
.
L d L] - L] - . L] L] L
L]
n
®
.

e o & o 8 8 -e ® o 8 o & o o
U‘U‘mu‘wwwu‘mu‘mumu‘
« 6 6 ¢ © o o o o o o
ISYSENESENE SN S

W JOWN b WN -

.
e
.
L]
L]
.
.
3
.
.
L]
*
L]
L]
-
.
L]
.
e
L]
L]
L]
-
L
L 4
L]
L]
L)
L]
.
.
®
*
3
[]
L]
]
.
*

e & 8 ® 8 8 e o+ @

1.6

- b

LI R S S
-—h b S
- O W

1.12

SECTION 2
2.1

[SE NN SN N]

nawh

s and Block Pseudo Operations

Macro o« o o
1.6.1 Terms . L] L d L] L] L] [] L4 L4 L] [] L] L] .
1.6.2 REPT"ENDM e ®© ® e o o ® o * o o o
1.6.3 IRP"‘ENDM e o e e e © @ s o » e o o
1.6.4 IRPC“ENDM Y Y o . .
1.605 MACRO L] [] .A - * L] - L] . L] (] L] L] .
1.6'6 ENDM L] [] * L] L] L] . L] L 4 L d L . L] L] L]
1.6.7 EXITM o * . . e * L] 3 ° .
1.6. B LOCAL [] L] L] L . L] L] L] . L] L] L] L] L]
1.6.9 Special Macro Operators and Forms
Using 280 Pseudo=o0pPS . « ¢ o o ¢ s o o o
Sample Assembly « o o« ¢ o ¢ o o o o o o o
MACRO"SO Errors
Compatability with Other Assemblers . . .
Format of Listings ., . e o e s o o o
1.11.1 Symbol Table Llstxng o« o o s e o e
Cross Reference Facility . « ¢« ¢ ¢ o « &
LINK-80 Linking Loader . . « ¢« ¢ « o+ .

Running LINK=80 . o o ¢ ¢ o o o ¢ o o o =
2.1.1 LINK=80 Commands « « « o ¢ o o =« o
2 1 2 LINK'GO Switches ® - - .
Sample Link « . « « e 6 o s o o o o o
Format of LINK Compatlble Object Files .
LINK-80 Error Messages . . « o o o o o =
Program Break Information . ..« « « o« o

® ® & & 3 s o ° & ° & & & e+ e & o

38
38

39
41
42
44
45

Microsoft Utility Software Page S

SECTION 1

MACRO-80 Assembler

Assembly language programs and subroutines are assembled
with MACRO-80. Just as the FORTRAN compiler generates
relocatable object code from a FORTRAN program, MACRO=-80
generates. Telocatable object code from an assembly language
program. Running MACRO-80 is very similar to running the
FORTRAN <compiler, and the command format is identical. The
default extension for a MACRO-80 source file is /MAC.

1.1 Running MACRO-80

i};ﬁb;h“ypgiéavg;TSSDos;the"command

, . in the disk drive), you are
_MACRO-~80 assembler, When the assembler
ommands, it prompts the user
To:exit-the assembler, use the

S 8 S 'ii;b' ippéorted by MACRC-80.
“execyting -4 command. line, the assembler

- exits to the operating system.

1.1.1 =
veys the name of the source
semble, and what options you
- format for an assembler
4 Atek9ptional):
[object

] {:drive#]. If you
o “assembler's default
is ‘not necessary to specify

g sfbler command. o

1 A sse

Microsoft Utility Software Page 6

Let's look individually at each part of the

1.

assembler command: ‘

Object filename

To create a relocatable object file, this part
of the command must be included. It is simply
the name that you want to call the object file.
The default extension for the object filename
is /REL.

Listing filename

To create a listing file, this part of the
command must be included. It is simply the
name that you want to call the listing file.
The default extension for the listing £ile is
/LST. ,
Source filename

An assembler command must always include a
source filename -- that is how the assembler
"knows” what to assemble. It is simply the
name of a MACRO-80 program you have saved on
disk. The default extension for 2 MACRO-80
source filename is /MAC. The source filename
is always preceded by an equal sign in an
assembler command.

Examples (asterisk is typed by M80):

*=TEST Assemble the program TEST/MAC

without creating an object
file or listing file.

*TEST,TEST=TEST Assemble the program

TEST/MAC. Create a reloca-
table object file called
TEST/REL and a listing file
called TEST/LST.

- *,TEST.PASStTEST.PASS Assemble the program

TEST/MAC.PASS and create a
listing file called
TEST/LST.FASS (No object
£ile created.)

*TESTOBJ=TEST Assemble the program TEST/MAC

ard create an object {ile
called TESTCBJ/REL. (No
listing file created.).

Switch

A switch on the end of a commainé specifies a
special parameter tc be usea during assembly.
Switches are always preceded Dby a dash (-).
More than one switch may be used in the same

Microsoft Utility Software Page 7

- command. The available switches are:

} Switch Action

0 Print all listing addresses in
octal.

H Print all 1listing addresses in
hexadecimal (default condition).

Cc Force generation of a cross
reference file.

Z Assemble 280 (Zilog formzt)
mnemonics (default condition).

I Assemble 8080 mnemonics.

Examples:

*CT.ME,CT.ME=CT.ME-O Assemble the program
CT/MAC.ME. Create a listing
file called CT/LST.ME and
an object file called
CT/REL.ME. The addresses
in the listing file will
e be in octal.

*LT,LT=LT-C Assemble the program LT/MAC.
Create an object file called
LT/REL, a listing file
called LT/LST, and a
cross reference file called
LT/CRF. (See Section 1.12.)

1.1.2 Input/Output Device Names

In the commands discussed 80O far, it 1is assumed
that all files are read from and written to the
disk. To use an I/0 device other than the disk,
specify the device name in place of the filename in
the assembler command.

The device names supplied by TRSDOS are:

*KI Keyboard Input
*DO Display Output
*PR Printer Output

(*pO and *PR are available only with TRSDOS Version
2.2 or later.)

Microsoft Utility Software ' page 8

1.2

1.2.1

Examples:

TEST, *PR=TEST Assemble the program TEST/MAC.
Create an object file called
TEST/MAC and output the
listing file, TEST/LST, at
the printer.

TEST, *DO=TEST Assemble the program TEST/MAC.
Create an object £file called
TEST/MAC and output the
listing filie, TEST/LST at
- the videsidisplay.

=*KI KI is used only if you
want to input a source file
from the keyboard. This
command assembles the source
file read from the
keyboard without creating
a REL or LsT file.

Format g£ MACRO-80 Source Files

In general, MACRO-80 accepts a source file that is
almost identical to source files for INTEL
compatible assemblers. Input source lines of up to
132 characters in length are acceptable.

MACRO-80 preserves lower case letters in quoted
strings and comments. All symbols, opcodes and
pseudo-opcodes typed in lower case will be
converted to upper case.

NOTE

1f the source file jncludes line numbers
£rom an editor, each byte cof the line
number must have the high bit on. Line
numbers from Microsoft's EDIT-80 Zditor are
acceptable.

Statements

Source files input to MACPRQ-80 consist of
statements of the form:

(label:([:]] (operator] (arguments] [;comment]
With the exception of the ISIS’aséembler $ controls
(see Section 1.10), it is not necessary that

Microsoft Utility Software Page 9

g . statements begin in column 1. Multiple blanks or
<. tabs may be used to improve readability.

If a label is present, it is the first item in the
statement and is immediately followed by a colon.
If it is followed by two colons, it is declared as
PUBLIC (see ENTRY/PUBLIC, section 1.5.10). For
exmple:

FOO:: RET
i, equivalent to

PUBLIC FOO
FOO: RET

The next item after the label (or the first item on
the 1line i, no label is present) is an operator.
An operator may be an opcode (8080 or 280
mnemonic), pseudo-op, Wmacro call or expression.
The evaluation order is as follows:

1. ' Macro call
2. Opcode/Pseudo operation
3. Expression

Instead of flagging an expression as an error, the
assembler treats it as if it were a DB statement
(see Section 1.5.4).

The arguments following the operator will, of
course, vary in form according to the operator.

A comment always begins with a semicolon and ends
with a carriage return. A comment may be a line by
itself or it may be appended to a line that
contains a statement. Extended comments can be
entered using the .COMMENT pseudo operation (see
Section 1.5.19).

1.2.2 Sxmbols

MACRO-80 symbols may be of any length, however,
only the first six characters are significant. The
following characters are legal in a symbol:

A-2 0-9 $. X’ ? e

The underline character is also legal in a symbol.
A symbol may not start with a digit. When a symbol
- is read, lower case is translated into upper case.
If a symbol reference 1is "followed by ## it is

. o o - ———— > ———

Microsoft Utility Software Page 10

declared external (see also the EXT/EXTRN
pseudo-op, Section 1.5.12).

Numeric Constants

The default base for numeric constants is decimal.
This may be changed by the .RADIX pseudo-op (see
Section 1.5.21). Any base from 2 (binary) to 16
(hexadecimal) may be selected. When the base is
greater than 10, A-F are the digits following S.
If the first digit of the number is not numeric
(i.e., A-F), the number must be preceded by a zero.
This eliminates the use of zero as 2 leading digit
for octal constants, as In “previous versicns Of
MACRO-80. -

Numbers are 16-bit unsigned quantities. A number
is always evaluated in the current radix unless one
of the following special notations is used:

nnnnB Binary

nnnnD Decimal

nnnno Octal

nnnnQ Octal

nnnnH Hexadecimal
X'nnnn' Hexadecimal

Overflow of a number beyond two bytes 1is ignored
and the result is the low order 16-bits.

A character constant is a string comprised of zero,
one or two ASCII characters, delimited by gquotation
marks, and used in a non-simple expression. For
example, in the statement

DB A' + 1
'A' is a character constant. But the statement
DB ‘Al

uses 'A' as a string because it is in a simple
expression. The rules for character constant
delimiters are the same as for strings.

A character constant comprised of one character has
as its value the ASCII value of that character.
That is, the high order byte of the value is zero,
and the low order byte is the ASCII value of the
character. For example, the value of the constant
'*A' is 41H.

A character constant comprisad of two characters
has as its value the ASCII value of the first

Microsoft Utility Software Page 11

. character in the high order byte and the ASCII
N value of the second character in the low order
: byte. For example, the value of the character

constant "AB" is 41H*256+42H.

1.2.4 Strings

A string is comprised of zero or more characters
delimited by quotation marks. Either single or
double quotes may be wused as string delimiters.
The delimiter gquotes may be used as characters if
they appear twice for every character occurrence
desired. For example, the statement

DB "I am ""great"" today"
stores the string
I am "great" today
If there are zero characters between the

delimiters, the string is a null string.

1.3 Expression Evaluation

1.3.1 Arithmetic and Logical Operators

The following operators are allowed in expressions.
The operators are listed in order of precedence.

NUL

LOW, HIGH

*, /, MOD, SHR, SHL

Unary Minus

+' - .

EQ, NE, LT, LE, GT,AGE

NOT |

AND !

OR, XOR
parentheses are used to change the order of
precedence. During evaluation of an expression, as

soon as a new operator is encountered . that has
precedence less than or equal to the last operator

Microsoft Utility Software Page 12 -

encountered, all operations up to the new operator
are performed. That is, subexpressions involving
operators of higher precedence are computed first.

All operators except +, =, *, / must be separated
from their operands by at least one space.

The byte isolation operators (HIGH, LOW) isolate
the high or low order 8 bits of an Absolute 16-bit
value. If a relocatable value is supplied as an
operand, HIGH and LOW will treat it as if it were
relative to location zero.

1.3.2 Modes

All symbols used as operands in expressions are in
one of the following modes: Absolute, Data
Relative, Program (Code) Relative or COMMON, (See
Section 1.5 for the ASEG, CSEG, DSEG and COMMON
pseudo-ops.) Symbols assembled under the ASEG, CSEG
(default), or DSEG pseudo-ops are in Absolute, Ccde
Relative or Data Relative mode respectively. The
number of COMMON modes in a program is determined
by the number of COMMON blocks that have been named
with the COMMON pseudo-op. Two COMMON symbols are
not in the same mode unless they are in the same e
COMMON block.

In any operation other than addition or
subtraction, the mode of both operands must be
Absolute,

If the operation is addition, the following rules
apply:

1. At least one of the operands must be Absolute.
2. Absolute + <mode> = <mode>

I1f the operation is subtraction, the following
rules apply:

1. <mode> - Absolute = <mode>

2. <mode> - <mode> = Absclute
where the two <mode>s are the same.

Fach intermediate step in the evaluation of an
expression must conform to the above rules for
modes, or an error will be generated. For example,
if FOO, BAZ and ZAZ are three Program Relative
symbols, the expression L o

Microsoft Utility Software Page 13

= FOO + BAZ - ZAZ

will generate an R error because the first step
(FOO + BAZ) adds two relocatable values. (One of
the values must be Absclute.) This problem can
always be fixed by inserting parentheses. So that

FOO + (BAZ = IAZ)

is legal because the first step (BAZ - ZAaZ)
generates an Absolute value that is then added to
the Program Relative value, FOO.

1.3.3 Externals

Aside from its classification by mode, a symbol 1is
either External or not External. (See EXT/EXTRN,
Section 1.5.12.) An External value must be
- assembled into a two-byte field. (Single~-byte
Externals are not supported.) The following rules
apply to the use of Externals in expressions:

1. Externals are legal only in addition and
subtraction.

- 2. 1f an External symbol is used in an expression,
the result of the expression is always
External.

3. When the operation is addition, either operand
(but not both) may be External.

4. when the operation is subtraction, only the
first operand may be External.

Microsoft Utility Software Page 14 —

.-‘\ """
1.4 Opcodes as Operands <
8080 opcodes are valid one-byte operands. Note -
that only the first byte is a valid operand. For
example:
MVI A, (OMP)
ADI (CPI)
MVI B, (RNZ)
CPI (INX H)
ACI (LXI B)
MVI C,MOV A,B
Errots will be generated if more than one byte 1is
included in the operand -- such as (cpr 5), LXI
B,LABEL1) or (JMP LABEL2].
Opcodes used as one-byte operands need not be
enclosed in parentheses.
NOTE
Opcodes are not valid operands in 280 mode.
i
1.5 Pseudo Operations 4

1.5.1 ASEG
ASEG

ASEG sets the location counter to an absolute
segment of memory. The location of the absolute
counter will be that of the last ASEG (default 1is
0), unless an ORG is done after the ASEG to change
the location. The effect of ASEG is also achieved
by using the code segment (CSEG) pseudo operation
and the =P switch in LINK-80. See also Section
1.5.27.

1.5.2 COMMON
COMMON /<block name>/

COMMON sets the location counter - to the selected

common block in memory. The location is always the
beginning of the area so that compatibility with

the FORTRAN COMMON statement 1is maintained. If &
<block name> is omitted or consists of spaces, it

is considered to be blank common. See also Section

1.5.27.

Microsoft Utility Software Page 15

i 1.5.3 CSEG
CSEG

CSEG sets the location counter to the code relative
segment of memory. The location will be that of
the last CSEG (default is 0), unless an ORG is done
after the CSEG to change the location. CSEG is the
default condition of the assembler (the INTEL
assembler defaults to ASEG). See also Secticn
1.5.27.

1.5.4 pefine Byte

DB <exp>[.,<exp>...)
DB <string>[<string>...]

The arguments to DB are either expressions Cr
- strings. DB stores the values of the expressions
' or the characters of the strings in successive
memory locations beginning with the current

location counter.

Expressions must evaluate to one byte. (If the
high byte of the result is 0 or 255, no error is
given; otherwise, an A error results.)

strings of three or more characters may not be used
in expressions (i.e., they must be immediately
followed by a comma or the end of the 1line). The
characters in a string are stored in the order of
appearance, each as 2 one-byte value with the high
order bit set to zero. '

Example:
0000' 4142 DB 'AB'
0002° 42 DB 'AB' AND OFFH

0003 41 42 43 DB *ABC'

1.5.5 Define Character

DC <string>

DC stores the characters in, <string> in successive
memory locations beginning with the current
e location c¢ounter. As with DB, characters are
; stored in order of appearance, each as a one-byte
i value with the high order bit set to zero.
However, DC stores the last character of the string
------- with the high order bit set ‘to one. An error will

Microsoft Utility Software Page 16 -

result if the argument to DC is a null string.

1.5.6 Define Space

DS <exp>

DS reserves an area of memory. The value of <exp>
gives the number of bytes to be allocated. All
names used in <exp> must be previously defined
(i.e., all names known at that point on pass 1).
Otherwise, a V error is generated during pass 1 and
a U error may be generated during pass 2. If aU
error is not generated during pass 2, a phase error
will probably be generated pecause the DS generated
no code on pass 1. '

1.5.7 DSEG
DSEG

DSEG sets the location counter to the Data Relative

segment of memory. The location of the data

relative counter will be that of the last DSEG

(default is 0), unless an ORG is done after the

DSEG to change the location. See also Section —
1.5027.

1.5.8 Define Word

DW <exp>[,<exp>...]

DW stores the values 6f the expressions in
successive memory locations beginning with the
current location counter. Expressions are
evaluated as 2-byte (word) values.

1.5.9 END
END (<exp>]
The END statement specifies the end of the program.
If <exp> is present, it is the start address of the

program. If <exp> is not present, then no start
address is passed to LINK-80 for that program.

Microsoft Utility Software Page 17

{ 1.5.10 ENTRY/PUBLIC

ENTRY <name>[,<name>...])
or
PUBLIC <name>[,<name>...])

ENTRY or PUBLIC declares each name in the list as
internal and therefore available for use by this
program and other programs to be loaded
concurrently. All of the names in the list must be
defined in the current program or a U error
results. An M error is generated if the name is an
external name or common-blockname.

1.5.11 EQU
<name> EQU <exp>

EQU assigns the value of <exp> to <name>., If <exp>
is external, an error |is generated. If <name>
already has a value other than <exp>, an M error is
generated.

1.5.12 EXT/EXTRN

‘o EXT <name>[,<name>...]
or
EXTRN <name>[,<name>...]

EXT or EXTRN declares that the name(s) in the 1list
are external (i.e., defined in a different
program). If any item in the 1list references 2
name that is defined in the current program, an M
error results. A reference to a name where the
name is followed immediately by two pound signs
(e.g., NAME##) also declares the name as external.

1.5.13 NAME
NAME ('modname’)

NAME defines a name for the module. Only the first
six characters are significant in a module name. A
module name may alsc be defined with the TITLE
pseudo=-0p. In the absence of both the NAME and
TITLE pseudo-ops, the module name is created from
the source file name. :

Microsoft Utility Software Page 18

1.5.14 Define Origin

ORG <exp> .

The location counter is set to the value of <exp>
and the assembler assigns generated code starting
with that value. All names used in <exp> must Dbe
known on pass 1, and the value must either be
absolute or in the same area as the location
counter.

1.5.15 PAGE
PAGE [<exp>]

PAGE causes the assembler to start a new output
page. The value of <exp>, if included, becomes the
new page size (measured in lines per page) and must
be in the range 10 to 255. The default page size
is S0 lines per page. The assembler - puts a form
feed character in the listing file at the end of a

page.

1.5.16 SET
<name> SET <exp>

SET is the same as EQU, except no error is
generated if <name> is already defined.

1.5.17 SUBTTL
SUBTTL <text>

SUBTTL specifies a subtitle to be listed on the
line after the title (see TITLE, Section 1.5.18) on
each page heading. <text> is truncated after 60
characters. Any number of SUBTTLs may be given in
a program.

1.5.18 TITLE
TITLE <text>

TITLE specifies a title to be listed on the first
line of each page. 1f more than one TITLE is
given, a Q error results. The first six characters
of the ¢title are used as the module name unless a
NAME pseudo operation is used. If neither a NAME
or TITLE pseudo-op 1is used, the module name is
created from the source filename.

Microsoft Utility Software Page 19

! 1.5.19 .COMMENT
5 . COMMENT <delim><text><delim>

The first non-blank character encountered after
.COMMENT is ,the delimiter. The following <text>
comprises a comment block which continues until the
next occurrence of <delimiter> is encountered. For
example, using an asterisk as the delimiter, the
format of the comment block would be:

LCOMMENT *
any amount of text entered
here as the comment block

-
*®
;return to normal mode

1.5.20 .PRINTX
+PRINTX <delim><text><delim>

The first non-blank character encountered after
.PRINTX is the delimiter. The following text is
ST listed on the terminal during assembly until
_another occurrence of the delimiter is encountered.
JPRINTX is useful for displaying progress through a
long assembly or for displaying the value of

conditional assembly switches. For example:

IF CPM
JPRINTX /CPM version/
ENDIF

NOTE

JPRINTX will outpui on both passes. 1f
only one printout is desired, use the IF1
or 1IF2 pseudo-op.

Microsoft Utility Software ' Page 20

1.5.21 .RADIX m
.RADIX <exp>

The default base (or radix) for all constants is
decimal. The JRADIX statement allows the default
radix to be changed to any base in the range 2 to
16, For example:

LXI H,OFFH
.RADIX 16
LXI H,OFF

Tne two LXIs in the example are identical. The
<exp> in a .RADIX statement is always in decimal
radix, regardless of the current radix.

1.5.22 L.REQUEST
.REQUEST <filename>[,<filename>...]

.REQUEST sends a regquest to the LINK-80 loader to

search the filenames in the list for undefined

globals before searching the FORTRAN library. The

filenames in the 1list should be in the form of —_
legal MACRO-80 symbols. They should not include 7
filename extensions or disk specifications. The

LINK-80 loader will supply its ‘default extension

and will assume the currently selected disk drive.

1.5.23 .Z80
.280 enables the assembler to accept 280 opcodes.
This is the default condition. 280 mode may also
be set by appending the 2 switch to the MACRO-80
command string =-- see Section 1.1.2.

.8080 enables the assembler to accept 8080 opcodes.
8080 mode may also be set by appending the I switch
to the MACRO-80 command string -~ see Section
1.1.2.

Microsoft Utility Software Page 21

(ﬁ\ , 1.5.25 Conditional Pseudo Operations

The conditional pseudo operations are:

’ IF/IFT <exp> True if <exp> is not 0.
IFE/IFF <exp> True if <exp> is 0.

fj IF1 ' True if pass 1.
IF2 True if pass 2.
IFDEF <symbol> True if <symbol> 1is defined or

has been declared External.

IFNDEF <symbol> True if <symbol> is undefined
or not declared External.

IFB <arg> True if <arg> is blank. The
angle brackets around <arg>
are required.

IFNB <arg> True if <arg> is not blank.
Used for testing when dummy
parameters are supplied. The
angle brackets around <arg>
. are required.

All conditionals use the following format:

IFxx {argument]

[ELSE

ENDIF

Conditionals may be nested to any level. Any
argument to a conditional must be known on pass |
to avoid V errors and incorrect evaluation. For
1F, 1IFT, IFF, and IFE the expression must involve
values which were previously defined and the
expression must be absolute. I1f the name is
defined after an IFDEF or IFNDEF, pass 1 considers
the name to be undefined, but it will be defined on

pass 2.
ELSE :
= Each conditional pseudo operation may opticnally be
« used with the ELSE pseudo op.-ation which allows

= alternate code to be generated - when the: opposite
condition exists. Only one ELSE is permitted for a

Microsoft Utility Software Page 22

given IF, and an ELSE is always bound to the most
recent, open IF. A conditional with more than one
ELSE or an ELSE without a conditional will cause a =

C error.

ENDIF

Each IF must have a matching ENDIF to terminate the
conditional. Otherwise, an ‘Unterminated

conditional' message is generated at the end of
each pass. An ENDIF without a matching IF causes a
C error.

1.5.26 Listing Control Pseudo Operations

Output to the listing file can be controlled by two
pseudo-ops:

.LIST and +XLIST

If a listing is not being made, these pseudo-ops
have no effect. .LIST is the default condition.
when a .XLIST is encountersd, Sscurce and obiject
code will not be listed wuntil a .LIST 1is
encountered.

The output of cross reference information is -
controlled by .CREF and .XCREF. If the cross
reference facility (see Secticn 1.12) has not Dbeen
invoked, .CREF and .XCREF have no effect. The

default condition is .CREF. When a .XCREF 1is
encountered, no Cross reference information is

output until .CREF is encountered.

The ~utput of MACRO/REPT/IRP/IRPC expansions 1s
controlled by three pseudo-ops: JLALL, .SALL, and
_XALL. .LALL lists the complete macro text for all
expansions. .SALL lists only the object code
produced by a macro and not its text. JXALL is the
default condition; it is similar to .SALL, except
a source line is listed only if it generates object
code.

1.5.27 Relocation pseudo Operations

The ability to create relocatable modules is one of
the major features of MACRO-80. Relocatable
modules offer the advantages of easier coding and
faster testing, debugging and modifying. In
addicion, it is possible to specify segments of
assembled code that will later be loaded into RAM y
(the Data Relative segment) and RCM/PROM (the Code
Relaz=ive segment). The pseudo operations that

Microsoft Utility Software Page 23

£ select relocatable areas are CSEG and DSEG. The
ASEG pseudo-op is used to generate non-relocatable
(absolute) code. The COMMON pseudo-op creates 2
common data area for every COMMON block that is
named in the program.

The default mode for the assembler is Code
Relative. That is, assembly begins with a CSEG
automatically executed and the location counter in
the Code Relative mode, pointing to location 0 in
the Code Relative segment of memory . All
subsegquent instructions will be assembled into the
Code Relative segment of memory until an ASEG or
DSEG or COMMON pseudo-op is executed. For example,
the first DSEG encountered sets the location
counter to location zero in the Data Relative
segment of memory. The following code is asembled
in the Data Relative mode, that is, it is assigned
to the Data Relative segment of memory. 1f a
subsequent CSEG is encountered, the location
counter will return to the next free location in
the .Code Relative segment and so on.

The ASEG, DSEG, CSEG pseudo-ops never have
operands. If you wish to alter the current value
of the location counter, use the ORG pseudo-op.

ORG Pseudo-op

At any time, the value of the location counter may
be changed by use of the the ORG pseudo-OP. The
form of the ORG statement is:

ORG <exp>

where the value of <exp> will be the new value of
the location counter in "the current mode. All
names used in <exp> must be known on pass 1 and the
value of <exp> must be either Absolute or in the
current mode of the location counter. For example,
the statements

DSEG
ORG 50 !

set the Data Relative location counter to 50,
relative to the start of the Data Relative secment

Q_i memory.

LINK-80
The LINK-80 linking loader isee Section 2 of this
manual) combines the segments and creates each
relocatable module in memory when the program 1s
T loaded. The origins of the relocatable segments
= are not fixed until the program is loaded.- and the
origins are assigned Dby LINK-80. The command to

!

Microsoft Utility Software Page 24 -

LINK-80 may contain user-specified origins through .
the use of the =P (for Code Relative) and -D (for =
Data and COMMON segments) switches. '

For example, a program that begins with the
statements

ASEG
ORG 800H

and is assembled entirely in Absolute mode will
always load beginning at 800 unless the ORG
statement is changed in the source file. However,
the same program, assembled in Code Relative mode
with no ORG statement, may be loaded at any
specified . address by appending the -P:<address>
switch to the LINK-80 command string.

1.5.28 Relocation Before Loading

Two pseudo-ops, .PHASE and .DEPHASE, allow code to
be located in one area, but executed only at a
different, specified area.

For example:

0000° .PHASE 100H =
0100 CD 0106 FOO: CALL BAZ :
0103 C3 0007 JIMP 200
0106 co BAZ: RET

.DEPHASE
0007 C3 0005 200: JIMP 5

All labels within a .PHASE block are defined as the
absolute value from the origin of the phase area.
The code, however, is loaded in the current area
(i.e., from O0' in this example). The code within
the block can later pe moved to 100H and executed.

1.6 Macros and Block Pseudo Operations

The macro facilities provided by MACRO-80 include

three repeat pseudo operations: repeat (REPT),
indefinite repeat (IRP), and indefinite repeat
character (IRPC). A macro definition operation

(MACRO) is also provided. Each of these four macro
operations is terminated by . the ENDM pseudo
operation.

1.6.1 Terms

For the purposes of discussion of macros and block

[

Microsoft Utility Software ‘ Page 25

operations, the following terms will be used:

1. <dummy> is used to represent a dummy parameter.
All dummy parameters are legal symbols that
appear in the body of a macro expansion.

2. <dummylist> is a list of <dummy>s separated by
commas. -

3. <arglist> is a 1ist of arguments separated by
commas. - <arglist> "must pe delimited by angle
‘brackets. .. Two _angle brackets with no

~;;}ntgryepiqgt;ﬁharacters (¢>) or two commas with

-~ 'no intervening characters enter a null argument

~ in the 1list. Otherwise an argument is 2
. character or series of characters terminated by
g -cOmmASpr « 237 . With angle brackets that are

4nside an <arglist>, one level of

gemoved . each time the bracketed
ig:;giqa']in_.ln <arglist>. (See
section 1:6.5.):A quoted string is an

. ~and is passed as such.

brackets or.a quoted string,

s are deleted from

¢o represent a list of

. separated by commas. No

Haired {the list is terminated

& -comment) , but the rules

rameters and nesting

game - a$ described for
Section 1.6.5.)

#tween REPT and ENDM is
exp> is evaluated as a
7 . <exp> contains ary
an"error is generated.

Microsoft Utility Software

1.6.3

1‘6.4

1.6.5

e mems e me gen 1w o e—p——y———— - —— L rm es 3. v wm, wewerewre T rcese.

IRP-ENDM
IRP <dummy>,<arglist>

ENDM

The <arglist> must be enclosed in angle brackets.

The number of arguments in the <arglist> determines
the number of times the block of statements is
repeated. Each repetition substitutes the next
item in the <arglist> for every occurrence of
<dummy> in the block., If the <arglist> is null
(i.e., <), the block is processed once with each

occurrence of <dummy> removed. For example:

IRP Xx,<1,2,3,4,5,6,7,8,9,10>
DB X
ENDM

generates the same bytes as the REPT example.

IRPC-ENDM

IRPC <dummy>,string (or <string>)

ENDM

IRPC is similar to IRP but the arglist is replaced
by a string of text and the angle brackets around
the string are optional. The statements in the
block are repeated once for each character in the
string. Each repetition substitutes the next
character in the string for every occurrence of
<dummy> in the block. For example:

IRPC X,0123456789
DB X+1
ENDM

generates the same code as the two previous
examples.

MACRO

Often it is convenient to be able to generate a
given sequence of statements from various places in
a program, even though different parameters may be
required each time the sequence is used.. This
capability is provided by the MACRO statement. The
form is

Page 26

~vd

LENI]

Microsoft Utility Software Page 27

<name> MACRO <dummylist>

-

ENDM

where <name> conforms to the rules for forming
symbols. <name> is the name that will be used to
invoke the macro. The <dummy>s in <dummylist> are
the parameters that will be changed (replaced) each
time the MACRO is invoked. The statements before
the ENDM comprise the body of the macro. During
assembly, the macro is expanded every time it 1is
invoked but, unlike REPT/IRP/IRPC, the macro is not
expanded when it is encountered.

The form of a macro call is
<name> <paramlist>

where <name> is the name supplied in the MACRO
definition, and the parameters in <paramlist> will
replace the <dummy>s in the MACRO <dummylist> on &
one-to-one basis. The number of items in
<dummylist> and <paramlist> is limited only by the
length of a line. The number of parameters used
, when the macro is called need not be the same &s
- the number of <dummy>s in <dummylist>. If there
: are more parameters than <dummmy>s, the extras are

ignored. 1f there are fewer, the extra <dummy>s

will be made null. The assembled code will contain
the macro expansion code after each macro call.

e oo

NOTE

A dummy parameter in a MACRO/REPT/IRP/IRPC
is always recognized exclusively as 2
dummmy parameter. Register names such as A
and B will be changed in the expansion if
they were used as dummy parameters.

Microsoft Utility Software

Page 28

Here is an example of a MACRO definition that

defines a macro called FOO:

FOO MACRO X

Y SET 0
REPT X

Y SET Y+1
DB Y
ENDM '
ENDM

This macro generates the same code as the
three examples when the call

FOO 10

is executed.

Another example, which generates the same

previous

code,

illustrates the removal of one level of brackets

when an argument is used as an arglist:

FOO MACRO X
IRP Y, <X>
DB Y
ENDM
ENDM

When the call

FOO <11203v4r5p6171819110>

is made, the macro expansion looks like this:

IRP Y,<1,2,3,4,5,6,7,8,9,10>

DB Y
ENDM

1.6.6 ENDM

Every REPT, IR?, IRPC and MACRO pseudo-op must be
terminated with the ENDM pseudo-op. Otherwise, the
‘Unterminated REPT/IRP/IRPC/MACRO’ message is
generated at the end of each pass. An unmatched

ENDM causes an O error.

1.6.7 EXITM

The EXITM pseudo-op is used to terminate &
REPT/IRP/IRPC or MACRO call. wWwhen an EXITM 1is
executed, the expansion is exited immediately and

any remaining expansion Or .repetition
Jenerated. If the block containing the

nested within another block, the outer

is not

EXITM is

level

Microsoft Utility Software Page 29
i continues to be expanded.

1.6.8 LOCAL
LOCAL <dummylist>

The LOCAL pseudo-op is allowed only inside a MACRO
definition. When LOCAL is executed, the assembler
creates a unique symbol for each <dummy > in
<dummylist> and substitutes that symbol for each
occurrence of the <dummy> in the expansion. These
unique symbols are usually used to define a label
within a macro, thus eliminating multiply-defined
labels on successive expansions of the macro. The
symbols created by the assembler range from ..0001
to ..FFFF. Users will therefore want to avoid the
form ..nnnn for their own symbols. If LOCAL
stataments are used, they must be the first
statements in the macro definition.

1.6.9 Special Macro Operators and Forms

& The ampersand is used in a macro expansion toO
concatenate text or symbols. A dummy
V parameter that is in a quoted string will not
;;;;; ; be substituted in the expansion unless it is
* immediately preceded by &. To form a symbol
from text and a dummy, put & between them.

For example:

ERRGEN MACRO X
ERROR&X:PUSH B

MVI B,'sX'
JMP ERROR
ENDM

In this example, the call ERRGEN A will

generate: :

ERRORA: PUSH B
MVI B,'A'
JMP ERROR
HY] In a block operation, a comment preceded Dby

two semicolons is not saved as part of the
expansion (i.e., it will not appear on the
listing even under .LALL). A comment preceded
by one semicolon, however, will be preserved
and appear in the expansion.

! When an exclamation point is wused in an
argument, the next character is ertered
literally (i.e., !; and-<;> are eguivalent).

il

Microsoft Utility Software Page 30

NUL NUL is an operator that returns true if its
argument (a parameter) is null. The remainder
of a line after NUL is considered to be the
argument to NUL. The conditional

IF NUL argument
is false if, during the expansion, the first
character of the argument is anything other
than a semicolon or carriage return. It is
recommended that testing for null parameters
be done using the IFB and IFNB conditionals.
1.7 Using 280 Pseudo-ops

The following 280 pseudo-ops are valid. The

function of each pseudo-op is equivalent to that of

its 8080 counterpart.

280 pseudo-op Equivalent 8080 pseudoc-op

COND IFT

ENDC ENDIF

*EJECT PAGE

DEFB DB 7
DEFS DS

DEEFW DW

CEFM DB

DEFL SET

GLOBAL PUBLIC

EXTERNAL EXTRN

The formats, where different, conform to the 8080
format. That is, DEFB and DEFW are permitted a
list of arguments (as are DB and DW), and DEFM is
permitted a string or numeric argument (as 1is DB).

Microsoft Utility Software Page 31

o~ 1.8 Sample Assembly
(.
’ DOS READY

M80

*EXMPL1,TTY:=EXMPL1

MACS80 3.2 PAGE 1

‘00100 ;CSL3(P1,P2)

00200 ;SHIFT P1 LEFT CIRCULARLY 3 BIT
00300 ; RETURN RESULT IN P2

00400 ENTRY CSL3

00450 ;GET VALUE OF FIRST PARAMLCTER
00500 CsL3:

0000’ 7E 00600 MOV A M
0001 23 00700 INX H
0002' 66 00800 MOV H,M
0003' 6F 00900 MOV L,A
01000 ;SHIFT COUNT
0004"' 06 03 . 01100 MVI B,3
0006"' AF 01200 LOOP: XRA A
. 01300 ;SHIFT LEFT
0007 29 01400 DAD H
01500 ;sROTATE IN CY BIT
' 0008' 17 01600 RAL
. 0009’ 85 01700 ADD L
000A" 6F 01800 MOV L,A
01900 ; DECREMENT COUNT
ooo0B' 05 02000 DCR B
02100 ;ONE MORE TIME
oooc' C2 0006" 02200 JNZ LOOP
00CF' EB 02300 XCHG
02400 ;SAVE RESULT IN SECOND PARAMET!
0010’ 73 02500 MOV M,E
o011 23 02600 : INX H
oo12' 72 02700 MOV M,D
0013" c9o 02800 RET
02900 END
MAC80 3.2 PAGE S

CSL3 0000I' LOOP o006’

No Fatal error(s)

Microsoft Utility Software v Page 32

Il

1.9 MACRO-80 Errors "\

MACRO-80 errors are indicated by a one-character
flag in column one of the listing file. If a
listing file is not being printed on the terminal,
each erroneous line is also printed or displayed on
the terminal. Below is a 1ist of the MACRO-80
Error Codes:

A Argument error
Argument to pseudo-op is not in correct format
or is out of range (.PAGE 1; .RADIX 1;

PUBLIC 1; STAX H; MOV M,M; INX C).

c Conditional nesting error '
ELSE without IF, ENDIF without II, two ELSEs
on one IF.

D Double Defined symbol
Reference to a symbol which is multiply
defined.

E External error
Use of an external illegal in context (e.g..,
FOO SET N2zME#$; MVI A,2-NAME##) .

i
M Multiply Defined symbol)
pefinition of a symbol which is multiply 3
defined. -
N Number error '
Error in a number, usually a bad digit (e.g..,
8Q) .
o] Bad opcode or objectionable syntax
ENDM, LOCAL outside a block: SET, EQU or
MACRO without a name; bad syntax in an opcode
(MOV A:); or bad syntax in an expression
(mismatched parenthesis, guotes, consecutive
operators, etc.).
P Phase error
value of a label or EQU name is different on
pass 2.
Q Questionable
Usually means a line is not terminated
properly. This is a warning error (e.g. MOV
A,B,).
R Relocation)
Illegal use of relocation in expr ssion, such d
as abs-rel. Data, code and COMMON areas are

relocatable.

Microsoft Utility Software Page 33

;~\
! U Undefined symbol
. A symbol referenced in an expressior is not

defined. (For certain pseudo-ops, & V error
is printed on pass 1 and a U on pass 2.)

v Value error
On pass 1 a pseudo-op which must have its
value known on pass 1 (e.g., .RADIX, .PAGE,
ps, IF, IFE, etc.), has 2 value which 1is
undefined. If the symbol is defined later in
the program, a U error will not appear on the
pass 2 listing.

Error Messages:

'No end statement encountered on input file'
No END statement: either it is missing or it
is not parsed due to being in a false
conditional, unterminated IRP/IRPC/REPT block
or terminated macro.

'Unterminated conditional'’
At least one conditional is unterminateéd at
the end of the file.

. ‘Unterminated REPT/IRP/IRPC/MACRO’

At least one block is unterminated.

(xx] ([No] Fatal error(s) [,xx warnings]

The number of fatal errors and warnings. The
message is listed on the CRT and in the list
file.

1.10 Compatibility with Other Assemblers

The $EJECT and $TITLE controls are provided for
compatability with INTEL's ISIS assembler. The
dollar sign must appear in column 1 only if spaces
or tabs separate the dollar sign from the contrel
word. The control '

$EJECT

is the same as the MACRO-80 PAGE pseudo-op.
The control

$TITLE ('text')

is the same as the MACRO-80 SUBTTL <text>
pseudo-op.

= The INTEL operands PAGE and- INPAGE = generats C
~~~~~ - errors when used with the MACRO-80 CSEG or DSEG



Microsoft Utility Software Page 34

pseudo-oOps. These exr.ors are warnings; the
assembler ignores the operands.

When MACRO-80 is entered, the default for the
origin is Code Relative 0. with the INTEL I1SIS
assembler, the default is Absolute 0.

With MACRO-80, the dollar sign ($) is a defined

constant that indicates the value of the location

counter at the start of the statement. Other

assemblers may use a decimal point or an asterisk.

Other constants are defined by MACRO-80 to have the
. following values:

A=7 B=0 C=1 D=2 E=3
H=4 L=5 M=6 SP=6 PSW=6

Format of Listings

On each page of a MACRO-80 listing, the first two
lines have the form:

(TITLE text] MAC80 3.2 PAGE x[-Yy]
(SUBTTL text]

where:

1. TITLE text is the text supplied with the TITLE
pseudo-op, if one was given 1in the source

program,

2. x 1is the major page number, which is
incremented only when a form feed 1is
encountered in the source file. (Wwhen using

Microsoft's EDIT-80 text editor, a form feed is
inserted whenever a page mark is done.) When
the symbol table is being printed, x = 'S'.

3. y is the minor page number, which is
incremented whenever the .PAGE pseudo-op is
encountered in the source file, or whenever the
current page size has been filled.

4. SUBTTL text is the text supplied with the
SUBTTL pseudo-op, if one was given in the
source program.

Next, a blank line 1is printed, followed by the
first line of output.

A line of output on a MACRO-80 listing has the
follcwing form: -

[cTis] [error] loc#m XX XXX oo source

an



Microsoft Utility Software Page 35

; Ig cross reference information is being output, the
.. first item on the line is the cross reference
number, followed by a tab.

A one-letter error code followed by a space appears
next on the line, if the line contains an error.
1f there is no error, a space is printed. 1f there
is no cross reference number, the error code column
is the first column on the listing.

The value of the location counter appears next on
the line. It is a 4-digit hexadecimal number of
6-digit octal number, depending on whether the =0
or -H switch was given in the MACRO-80 command
string.

The character at the end of the location counter
value is the mode indicator. It will be one of the
following symbols:

. ' Code Relative
. Data Relative
! COMMON Relative
<space> Absoclute
* External

Next, three spaces are printed followed by the
assembled code. One-byte values are followed by a
space. Two-byte values are followed by a mode
indicator. Two-byte values are printed in the
opposite order they are stored in, i.e., the high
order byte is printed first. Externals are either
the offset or the value of the pointer to the next
External in the chain.

The remainder of the line contains the line of
source code, as it was input.

1.11.1 Symbol Table Listing

In the symbol table listing, all the macro names in
the program are listed alphabetically, followed by
all the symbols in the program, listed
alphabetically. After each symbol, a tab 1is
printed, followed by the value of the symbol. If
the symbol is Public, an I is printed immediately
after the value. The next character printed will
be one of the following:

'l,




Microsoft Utility Software Page 36

U Undefined symbol.

C COMMON block name, (The "value® of the
COMMON block is its length (number of
bytes) in hexadecimal or octal.)

. External symbol.

<space> Absolute value.

' Program Relative value.

" Data Relative value.

1 COMMON Relative value.
1.12 Cross Reference Facility

The Cross Reference Facility is invocked by typing
CREF80 at TRSDOS command level. In order to
generate a cross reference listing, the assembler
must output a special listing file with embedded
control characters. The MACRO-80 command string
tells the assembler to output this special listing
file. (See Section 1.5.26 for the .CREF and .XCREF
pseudo-ops.) =C is the cross reference switch. —
When the -C switch is encountered in a MACRO-80
command string, the assembler opens a /CRF file
instead of a /LST file. ;

Examples:

*=TEST=-C Assemble file TEST/MAC and
create object file TEST/REL
and cross reference file
TEST/CRF.

*T ,U=TEST-C Assemble file TEST/MAC and
create object file T/REL
and cross reference file
U/CRF.,

Whan the assembler is finished, it is necessary to
call the cross reference facility by typing CREF80.
(CREF80 is on diskette #1) CREF80 command format is:

*listing file=source file

The default extension for the source file is /CRF.
the =L switch is ignored, and any other switch will
cause an error message to be sent to the terminal.
Possible command strings are: )



- - o o —— —

Microsoft Utility Software Page 37

*=TEST Examine file TEST/CRF and
generate a Cross reference
listing file TEST/LST.

*T=TEST : Examine file TEST/CRF and
generate a Cross reference
listing file T/LST.

Cross reference listing files differ from ordinary
listing files in that:

1.

2.

Each source statement is numbered with a cross
reference number.

At the end of the listing, variable names
appear in alphabetic order along with the
numbers of the lines on which they are
referenced or defined. Line numbers on which

- the symbocl is defined are flagged with '#'.



Microsoft Utility Software Page 38

SECTION 2

LINK-80 Linking Loader

The LINK-80 Linking Loader takes the relocatable object
files generated Dby the FORTRAN compiler and MACRO-80
agsembler and loads them into memory in a form that can be
executed. In addition, LINK-80 automatically searches the
system library (FORLIB) and loads the library routines
needed to satisfy any undefined global references (i.e.,
calls generated by the compiled program to subroutines in
the system library).

LINK-80 provides the user with geveral loading options.
Programs may be loaded at uger-specified locations, and
program areas and data areas may be separated in memory. A
memory image of the executable file produced by LINK-80 can
be written to disk. The default extension for the name of
the executable file is /CMD. ‘

2.1 Running LINK=-80

When you give TRSDOS the command
L80

(diskette #2 must be in the disk drive), you are
running the LINK-80 1linking: loader. when the
locacder is ready to accept commands, it prompts the
user with an asterisk. The loader will exit back
to TRSDOS after a command containing an E or G
switch (see Section 2.1.1), ar after a <break> is
done at command level.

command lines are also supported by LINK-80.

2.1.1 LINK-80 Commands

A command to LINK-80 consists of a string of
filenames and/or switches. The command format is:

[filename1][-switch1][,filenameZ][-switchZ]...

All filenames must be in TRSDOS filename format.
After LINK-80 receives the command, it will lo;d or
search (see the S switch) the specified files.

Then it will list all the symbols that remained
undefined, with each followed by an asterisk-.



Microsoft Utility Software Page 39

Vo Example:

“ *MAIN
DATA 5200 5300
SUBR1* (SUBR1 is undefined)
DATA 5200 5300

*SUBR1 .
*=-G (starts Execution = se€ below)

Typically, to execute a FORTRAN progranm and
subroutines, the user types the list of filenames
followed by =G (begin execution). Before execution
begins, LINK=-80 will always search the systen
library (FORLIB/REL) to satisfy any unresolved
external references. 1f you wish to first search
libraries of your own, append the filenames that
are followed by =S to the end of the loader command
string. )

2.1.2 LINK-80 Switches

. A number of switches may be given in the LINK-80
command string to specify actions affecting the
locading process. Each switch must be preceded by 2
dash (-). These switches are:

Switch Action
R Reset. Put loader back in its

initial state. Use =R if you
loaded the wrong file by mistake
and want to restart. -R takes
effect as soon as it is encountered
in a command string.

E or E:Name Exit LINK-80 and return to the
Operating ' System., The system
library will be searched on the
current dsk to satisfy any existing
undefined  globals. The optional
form E:Name (where Name is a global
symbol previously defined in one of
the modules) uses Name for the
start address of the program. Use
-E to load a program and exit back
to the monitor.

G or G:Name Start execution of the program as
soon as the current command line
has been interpreted. The systen




———————n -—

Microsoft Utility Software Page 40

P and D

library will be searched on the
current disk to satisfy any
existing undefined globals. Before
execution actually begins, LINK-80
prints two numbers and a BEGIN
EXECUTION message. The two numbers
are the start address and the
address of the next available byte.
The optional form G:Name (where
Name is a global symbol previously
defined in one of the modules) uses
Name for the start address of the
program.

If a <filename>=N is specified, the
program will be saved on disk under
the selected name (with a default
extension of CMD) when a -E or =G
is done.

-P and -D allow the origin(s) to be
set for the next program locaded.
-p and -D take effect when seen
(not deferred), and they have no
effect on programs already loaded.
The form is -P:<address> or
-D:<address>, where <address> 1is
the desired origin in the current
typeout radix. (Default radix is
hexadecimal. -0 sets radix to
octal; -H to hex.) LINK-80 does a
default <-P:<link origin> (i.e.,
$200).

If no -D is given, data areas are
loaded before program areas for
each module. If a =D is given, all
Data and Common areas are loaded
starting at the data origin and the
program area ac the program origin.
Example:

*-p:200.FQO

Data 200 300
*~R

*.p:200 -D:400,FCO
Data 400 480
Program 200 280

List the origin and end of the pro-
gram and data area and all
undefined globals as soon as the
current command line has been
interpreted. The program informa-

——

LT



Microsoft Utility Software Page 41

{ tion is only printed if a ~-D has
§ ’ been done. Otherwise, the prograrm
is stored in the data area.

M List the origin and end of the pro-
gram and data area, all defined
globals and their values, and all
undefined globals followed by an
asterisk. The program information
is only printed if a =D has been
done. Otherwise, the program is
stored in the data area.

S Search the filename immediately
preceding the =S in the command
string to satisfy any undefined

globals.
Examples:
*=M List all globals
’ *MYPROG , SUBROT ,MYLIB-S y
) Load MYPROG.REL and SUBROT.REL and
then search MYLIB.REL toO satisfy
any remaining undefined globals.
*-G Begin execution of main prog’
2.2 Sample Link
DOS READY
L80
*EXAMPL ,EXMPL1-G

DATA 5200 S2AC
(5200  52AC]
(BEGIN EXECUTION]

1792 14336
14336 -16383
-16383 14
14 112

112 896

DOS READY




Microsoft Utility Software

2.3

Format of LINK Compatible Object Files

NOTE

P

Section 2.3 is reference material for use

who wish to know the load format of LIN
relocatable object files. Most users

K.-
wi

age 42

rs
80
11l

want to skip this section, 2as it does not
contain material necessary to the operation

of the package.

LINK-compatible object files consist of

a bit

stream. Tndividual fields within the bit stream
are not aligned on byte pboundaries, except as noted
below. Use of a bit stream for relocatable object
files keeps the size of object files to a minimum,
thereby decreasing the number cf disk reads/writes.

There are two basic types of load items:
and Relocatable. The £irst bit of

Ab
an

solute
item

indicates one of these two types. If the first bit
is a 0, the following 8 bits are loaded as an
absolute byte. If the first bit is a 1, the next 2
bits are ussd to indicate one of four types of

relocatable items:

00 special LINK jitem (see below).

01 Program Relative, Load the following 16
bits after adding the current Progran
base.

10 Data Relative. Load the following 16

bits after adding the current Data base.

1R Common Relative. Load the following 16
pits after adding the current Common

base.

Special LINK items consist of the pit stream 100

followed Dby:
a four-bit control field

an optional A field consisting
of a two-bit address type that
is the same as the two-bit field
above except 00 specifies
absolute address

an optional B field cons.sting



Microsoft Utility Software Page 43

of 3 bits that give a symbol
length and up to 8 bits for
each character of the symbol

A general representation of a special LINK item is:

1 00 xxxx Yyy nn zzz + characters of symbol name
A field B field

XXXX Four-bit control field (0-15 below)

Yy Two-bit address type field

nn Sixteen-bit value

222 Three-bit symbol length field

The following special types have a B-field only:

Entry symbol (name for search)
Select COMMON block

Program name

Request library search
Reserved for future expansion

S WN -0

The following special LINK items have both an A
field and a B field:

) Define COMMON size

6 Chain external (A is head of address chain,
B is name of external symbol)

7 Define entry point (A is address, B is name)

8 Reserved for future expansion

The following special LINK items have an A field
only:

9 External + offset. .The A value will
be added to the two bytes starting
at the current location counter
immediately before execution.

10 Define size of Data area (A is size)
11 Set loading location counter to A
12 Chain address. A is head of chain,

replace all entries in chain with current
location counter.
The last entry in the chain has an
address field of absolute zero.

13 pDefine program size (A is size)

14 End program (forces to byte boundary)

The following special Link item has neither an A nor
a B field: ‘

15 End file



s AN

Microsoft Utility Software Page 44

LINK-80 Error Messages

LINK-80 has the following error messagess

7No Start Address A =G switch was issued,
but no main program
had been loacded.

?2Loading Error Tﬁe last file given for input
was not & prcperly formatted
LINK-80 object file.

?0ut of Memory Not enough memory to load
program.

?Command Error Unrecognizable LINK-80
command,

?2<file> Not Found <file>, as given in the command

string, did not exist.,

$2nd COMMON Larger J/XXXXXX/
The first definition ot
COMMON block /XXXXXX/ was not
the largest definiticn. Re-
order module loading seguence .
or change COMMON block
definitions.

tMult., Def, Global YYYYYY
More than one definition for
the global (internal) symbol
YYYYYY was encountered during
the locading process,

sOverlaying [Program] Area [,Start = xXxxX =
Data ,Public = <symbol name> (xxxX) J

,External = <symbol name> (Xxxx) |

A =D or =P will cause already
loaded data to be destroyed.

?2Intersecting [Program] Area
Data

The program and data area
intersect and an address Or
external chain entry is in
this intersection. The
final value cannot be con-
verted to a current value
since it is in the area
intersection.



Microsoft Utility Software Page 45

?Start Symbol - <name> = Undefined
After a =E: or =G: is given,
the symbol specified was not
defined.

Origin [Above] Loader Memory, Move Anyway (Y or N)?

Below

After a -E or =G was given,
either the data or program
area has an origin or top
which lies outside loader
memory (i.e.. loader origin
to top of memory). 1f a
Y <cr> is given, LINK-80
will move the area and con-
tinue. If anything else is
given, LINK-80 will exit.
In either case, if a =N was
given, the image will alreacy
have been saved.

?Can't Save Object File ‘
) A disk error occurred when

the file was being saved.

2.5 Program Break Information

LINK-80 stores the address of the first free
location in a global symbol called $MEMRY if that
symbol has been defined by a program loaded.
$MEMRY is set to the top of the data area +1.

NOTE

1f -D is given and the data origin is less
than the program area, the user must be
sure there is enough room to keep the
program from being destroyed. This 1is
particularly true with the disk driver for
FORTRAN-80 which uses $MEMRY to allocate
disk buffers and FCB's.






Microsoft Utility Software Page 47

! Index
.8080 . L . . L ] [ ] [ ] L] * * 20
.COMMENT L] * . . L] L ] . * 19
.CREF . . L] L] . * * [ ] [ ] * 22
ODEPHASE * . L ] * L ] [ ] * * 24
QLALL . * [ ] L] L] L * * * L] 22
QLIST [ ] » ® L] * L] L L ] [ ] - 22
.PAGE * .. L ] L J L ] L ] l. . ® L ] 34
OPHASE [ ] L] L ] L] L . . L ] L] 24
.PRINTX * L] [ ] * L ] . L ] L ] L] 19
CRADIX & o o o o o o« « o 10, 20
.REQUEST * L ] . L ] L[] L] . L] 20
eSALL + o ¢ e o o o o o o 22
‘xA-IlL . * L ] L] L] L] * L ] L ] . 22
OXCREF * * * [ ] L ] L [ ] ® * 22
OXLIST L ] L] * E ] * e L ] L ] * 22
Qzao . * € . L] L ] * L L ] [ ] 20

Absolute memory . . . « o 12, 14, 35
Arithmetic operators . . 11 .
ASEG. e o o o e o e o e o 12, 14, 23

Block pseudo Ops « .« . o 24
10

9

Character constants .
Code Relative , . & .

Comments . « o o o .

COMMON e o o e e o . 12, 14, 23'24, 35-36
Conditionals . « « ¢ & 21

Cross reference facility 7, 22, 35-36

CSEG o o o o o o o o o o 12, 15, 23, 34

Define Byte . « « ¢« o o o« 3, 15
Define Character . . . « 15
Define Origin . « » « « « 18
Define Space . . « « « o 16
Define Word . « « « o « o« 16
Device Names . « o o o o 7
DSEG e o e o o o . 3 . . 12’ 16, 23' 34
EDIT‘BO . . e . e o * . . a, 34
ELSE L ] L] * *® L] L4 . L] L] [ ] 2’
END ) L] L ] L ] L] o L] . L ] L ] L ] . 1 6
ENDIF e 6 ® ® ® e e e o o 21-22
ENDM ® L] - L] L ] [ ] L] * * [ ] 24 ’ 28
ENTRY [ ] [ ] L] [ L] [ ) L ] L] L ] L 17
EQU e © o © ®© o o ® o o o 17-18
Error codes . « « « « « o« 32, 35
Error messages . . . o o 33, 44
EXITM ¢ ¢ o o o o o o o o 28
EXT . L] L] . L L] L] [ ] . - L4 17
— Externals e o e o © o o o 134 17, 320 35 °
EXTRN L] . - L] . [ ] * L] * L] 17



FORLIB . . »

I/0 devices
IF L ] *
IFY . .
IF2 . .
IFB . .«
IFDEF .
IFE . &
IFF . .

IFNB
IFT .
INTEL
IRP .
IRPC

o & @ @ & o & o o & O o

e € e & o e & & o & & &
e ®© @ ¢ @& & & ¢ o © o o o
e o o 6 & & o & o & ¢ o

L]
L]
L]
*

Keyboard

Listings .« « o o
LOCM‘ L] [ ] * . . [
Logical operators

MACRO L ] L 2 L] L ] [ ] *
Macro operators .
Modes . ¢ ¢ o o o
Nm L ] * L ] ® . L ]

Operators « « « o
ORG L J L] L] L] L] [ ] L]

PAGE L ] L ] * L J [ ] ®
Printer . « « o o
Program Relative

PUBLIC * * L) [ 2 *
REPT * L] * L ] [ ] [ ]

SET ¢« o o o

Strings . ¢ ¢ o
SUBTTL o ¢ o o o
Symbol tabl o o

TITLE . [} L] [ . .

Video display .« .

e e o o

L] L] [ L]

L] * L ] L] *® L]

[ ] L] . L ] e e L ] L] L ] [ L] L ] [ ]

L - L ] L]

. ® * L]

21

8, 33-34
22, 24,
22, 24,

7
22,

29
11

26
26

34-35, 37

22, 24-28
29
12

17

11
14-16, 18, 23
18,
7
12

9,

33

17, 35

22, 24-25
18
11
18, 33-34
34=-35
17-18, 34

5



wong

¥

.

s




-
WOTE | CowTiwdaArior  wus
UST me

HoN

EDITOR &0ES 70 7 wor7r 7

—

S0P
(@ 72 woT a2s5E PROGLemS!



DTN Microsoft EDIT-80 User's Guide

Contents

CHAPTER 1 EDIT-80 OperatiOn « o o o o o o o

1.1 Introduction o« o o o o o o o o o
1.2 Ru.nning EDIT"'BO . e e o e o . . °
1.3 Ending the Editing Session . . .
1.4 Line Numbers and Ranges « « « « =«
1.5 Format NotationN « ¢ ¢ o o o o o o

CHAPTER 2 Beginning Interline Editing

Insert Command .

2' 1 ® . *® [ ] L 2 L] [ ] *
2.2 Delete Command .« o o o o o o o o
2.3 Replace Command o« o o o o o o
2- 4 Print comnd e e & ® ® o o o o o
2.5 List comand e © ® © e o o o @ ‘0
2.6 Number Command « o o o o o o o o
CHAPTER 3 Intraline Editing - Alter Mode .
3.1 Alter Command « « o o o o o o o o
3.2 Alter Mode Subcommands « ¢ « o o
3,3 Cursor Position « « o ¢ o ¢ o o o
3.4 Insert TeXt o« o o o o o o o o o o
3.5 Delete TeXt « « o o o o o o o o o
3.6 Replace Text =« ¢ o o o o ¢ o o o
3 * 7 Find Text [ ) ® [ ) L] * L ] * [ ] L] L] * *
3.8 Ending and Restartin Alter Mode
3.9 Extend Command o o o o ¢ o o o @

CHAPTER 4 Find and Substitute Commands . .
4.1 Find Comand e e o o o 0 e o o o
4.2 Substitute Command . « ¢ ¢ ¢ o ¢
CHAPTER 5 Pages e o o o o o & & o O e & & o

Specifying Page Numbers

5. 1 - [ * L J *
5.2 Inserting Page Marks o« « o ¢ o o
5.3 Deleting Page Marks « o io « o o @
S.4 Begin Command « « o o o & o o ¢
5.5 oOther Commands and Page Marks . .

s o o o o
e o o o o
" o s e @
e o o o o
@~ uhw,m w

e & o & * s
L] [ ] L ] L ] L] L ]
e ® 5 © 8o o
L] L] L ] . L] ®

L] L L ] [ N [ ) L ] . L]
[ ® . L] . L L ] L] L]
L] [ ] L] * o L [ ) L] L ]
L ] L] L L * L] . L ] L]

L] L L ] [ ] [ ]
e o o o ®
e o o o o
L) . L] L ] L]



.1
.2

APPENDIX A

AéPENDIX
APPENDIX
APPENDIX
APPENDIX

APPENDIX

" m 0O O w

- — —— ¢ o e+ S o ——

EXiting EDIT"SO e &6 ®© © © o & o o

Exit Command

Quit Command . o« o o o o o o o o
Write Comumand ¢« « o« o o s o o o o
Index Files e © o o o o o o o o o
Parameters e o o & o o o o o o o
BASIC Switch e ®© o 9 o e o o o o
SEQ and UNSEQ Switches e o o o @

Alphabetic Summary of Commands .
Alphabetic Summary of Alter Mode
Summary of Notation . « « ¢ o o

EDIT-80 Special Characters . . .

Error Messages , « o o o o o o ¢

Output File FOormat o o« ¢« o o o o

e o & o o o o

. - — ———— ————— | — o -

[ ] L] L] L] . L [ )

Subcommands

.

L ] L d * L] * L] L ]

30
32
34
35
36
38

,,,,,



Microsoft EDIT-80 User's Guide Page 5

”‘ CHAPTER 1

EDIT-80 Operation

1.1 Introduction

EDIT-80 is a line-oriented and character-oriented
text editor. EDIT-80 commands are simple and
straightforward, yet powerful enocugh to accommodate
the most demanding user. For the novice or for
those requiring only cursory use of EDIT-80, the
first four chapters of this document contain all
the information necessary to complete a fairly
extensive editing session. The remaining chapters
describe the enhancements toO EDIT-80 that provide
the user with more sophisticated techniques.

1.2 Running EDIT-80

To run EDIT-80, type and enter
EDIT

- at TRSDOS command level., EDIT-80 will ask for the
filename by typing

FILE:

Enter the name of your file. Use TRSDOS filename
format for the filename:

filenamc[/extcnsion](.password][:drivet]

1f the filename refers to a file that alreacdy
exists, type the filename followed by <enter>, and
EDIT-80 will read in the file. If the file does
not have line numbers, EDIT-80 will append them,
beginning with line number ‘100 and incrementing by
100. After EDIT-80 prints

!grsion X.X

Copyright 1977,78 (c¢) by Microsoft
Created: XXXX :

XXXX Bytes free i

3=

it is at commmand level, as indicated by the *

prompt. All commands to EDIT-80 are entered after
the * prompt. ;

. 7 1f the filename refers to a new f£ile to.be created,

= type the filename followed by the <break> key.



Microsoft EDIT-80 User's Guide Page 6

1.3

EDIT-80 will return the message

Creating

!S;Slon XoX

Copyright 1977,78 (c) by Microsoft
Created: XXxX

§xxx Bytes free

Next enter the command I (see Section 2,1 for a
further description of the I command). EDIT-80
will type the first line number, 00100, followed by
a tab.

*1
T0100

Now you are ready to enter the first line of your
file. A line consists of up to 255 characters and
is terminated by <enter>. After every line
entered, EDIT-80 will type the next line number,
incrementing by 100. This is tRke “permanent
increment.® (There are various commands that will
change the permanent increment - see Chapter 2.)
Line numbers 00000 through 99999 are available for
use in your EDIT-80 file.

NOTE

Microsoft products such as TRS=-80 FORTRAN
and MACRO-80 all support input files which
include EDIT-80 line numbers.

If a typing error is made while entering or editing
a line, use the Delete key (=) to delete the
incorrect character(s). If, while typing a line,
you wish to erase the entire line and start over,
type shift <€—.

When you wish to stcp entering lines and return to

command level, type the <break> key after the next
available line number.

Ending the Editirg Session

To exit EDIT-80, enter the Exit command:
*E

The Exit command writes the edited file toO disk
under the filename that was used to create the
file. Subsequent editing sessions with that file
require that a filename be specified with the Exit



Microsoft EDIT-80 User's Guide Page 7

. command. See Section 6.1.

To exit EDIT-80 without writing the edited file to
disk, enter the Quit command:

*Q

After execution of a Quit command, all the changes
entered during the editing session are lost.

1.4 Line Numbers and Ranges

Most commands to EDIT-80 require a reference to a
line number or a range of line numbers. A line
number is specified by using the number itself (it
is not necessary to type the leading zeros), Or one
of three special characters that EDIT-80 recognizes
as line numbers. These special characters are:

. (period) refers to the current line
A (up arrow) refers to the first line
* (asterisk) refers to the last line

Ranges may be specified in one of two ways:
) ‘ 1. With a colon. The designation
200:1000
means all lines from line number 200 to line
number 1000, inclusive. £ lines 200 and 1000
do not exist, the range will begin with the
first line number greater than 200 and end with
the last line number less than 1000.
2. With an exclamation point. The designation
20013
means the range of three lines that starts with
line 200. If 1line 200 does not exist, 200!3
means the range of three lines that starts with
the first line after 200.

Here are some examples of line and range
specifications (shown here with the Print command) :

J
P.:2000 Prints the range that begins with

the current linF and ends with
line 2000. :
PS00 Prints line 500.

= P. Prints the current line.



Microsoft EDIT-80 User's Guide Page 8

P.!15 Prints the range that begins at
the current line and ends after
the next 15 lines.

PA:1500 Prints the range that begins with
the first line and ends with
line 1500.

PA:* Prints the entire file.

See Appendix C for more examples of range
specification.

Format Notation

Throughout this document, generalized formats of
EDIT-80 commands are given to guide the user.
These formats employ the following conventions:

1. Items in square brackets are opticnal.

2. Items in capital letters must Dbe entered as
shown.

3, Items in lower case letters enclosed in angle
brackets are to be supplied by the user:

<position> supply any line number (up
to five digits) or ".","A"
or "*" :

<range> supply any <poesiticn> or

any <range>
<range> = <position>:<position>
or
<position>!<number>

<inc> supply a non-zero integer
to be used as an increment
between line numbers

<filename> supply any legal TRSDOCS
filename as described
in Section 1.2

4., Punctuation must be included where shcwn.

5., Items separated by a vertical line are mutually
exclusive., Choose one.

6. <break> refers to the break key and is- echoed
as $. If you see a $ in a format notation, it
refers to the break key.

o
v



- ———— e em e eee v — —— - ——— e

Microsoft EDIT-80 User's Guide

7. 1In any command format, Spaces
insignificant, except within a
filename.

Page 9

and tabs are
line number or a

8. Underlined items are typed by EDIT-80.



Microsoft EDIT-80 User's Guide Page 10

CHAPTER 2

Beginning Interline Editing

Editing a file by printing, inserting, deleting and
replacing entire lines or groups of lines is termed
interline editing. This section describes the commands used
to perform these functions.

2.1 Insert Command

The Insert command is used to insert lines of text
into the file. EDIT-80 types each line number for
you during insert mode. The format of the Insert
command is:

I[<position>(,<inc> ;<ine>]]

Insertion of lines begins at <position> and
continues until <break> is typed or until the
available space at that point in the file |is
depleted. (In either case, EDIT-80 returns to
command level.) i

If no <inc> is included with the command, the

default is the permanent increment. ,<inc>
specifies a new increment that is then established
as the permanent increment. ;<ine> specifies a

temporary increment for use with the current
command, but does not change the permanent
increment.

I1f no argument is supplied with the Insert command
(I<enter>), insertion resumes where the last insert
command was terminated, using the last temporary

increment. If only <position> is . supplied
(I<position><enter>), the permanent increment 1is
used.

EDIT-80 will not allow insertion where a line
already exists. If <position> is a line number
that already exists, the command I<position> will
add the permanent increment (or the temporary
increment, if one was specified) to <position> and
allow insertion at line number <position>+<inc>.
If line <position>+<inc> already exists, or if line
numbers exist between <position> and
<position>+<inc>, an error message will be printed.
The line feed (&) key may be used to start a new
physical line without starting a new logical line,
thus providing compatibility with Microsoft BASIC



Microsoft EDIT-80 User's Guide Page 11

source files.

Here is an example using the Insert command:

*17740,10

07740 ’ K=K+ 1
(w1 GO TO 400
07780 $

LA L

Note that the insertion is terminated with <break>.
The <break> key may be typed at the end of the last
line 4inserted (instead of <enter>) or at the
beginning of the next line. A line is not saved if
<break> is the first key typed on that line.

2.2 Delete Command
The Delete command removes a line or range of lines
- from the file. The format of the command is:
' D<range>

Aftir a Delete command is executed, the current
line (".") is set to the first line of the deleted
range.
Examples of the Delete Command:

D7000 delete line 7000

D. delete the current line

D200:900 delete lines 200 through 900

D2000:* delete all lines from line

2000 through the last line

2.3 Replace Command

The Replace command combines the effects of the

Delete and 1Insert commands. The format of the
command is: :

R<range>[,<inc> ;<inc>)

The Replace command deletes all of the 1lines in
<range>, then allows the user to enter new text as
if an Insert command had been 4issued. (EDIT-80
types the line numbers.)

The options for selecting the increment between




Microsoft EDIT-80 User's Guide Page 12 -

line numbers are the same as those for the Insert
command (see Section 2.1). - =

Here is an example using the Replace command:

*R500:600;50

30500 po 80 I=1,7
50550 Y (I)=ALOG(Y(I))
§0600 80 CONTINUE
—

In the above example, the lines in the range 500 to
600 were deleted and replaced by three new lines
(500, S50 and 600), using a temporary increment of
S0. Insertion terminated automatically because
there was not enough room for EDIT-80 to create
line 650.

2.4 Print Command

The Print command prints lines at " the terminal.
The format of the command is:

pP<range>
Examples of the Print command :

P.:700 print all lines from the
current line through line 700

P800:* print all lines from line 800
through the end of the file

Typing <line feed> (¥) at command level will cause
the 1line after the current line to be printed.
Typing <break> at command level will cause the line
pefore the current line to be printed. Typing
P<enter> will cause the next 20 lines to be

printed.

2.5 List Command

The List command
L<range>

is the same as the Print commanq, except the output
goes to the line printer. ‘



Microsoft EDIT-80 User's Guide Page 13

2.6 Number Command

The Number command renumbers lines of text. You

may wish to renumber lines to *make room" for an

: insertion, or just to organize the line numbers in
' a file. The format of the Number command is

. ' e N(<start>] [,<inc> ! 31<inc>] [=<range>)

where: .

‘1, <start> 4is the ~first number of the new
.- .sequence, If <start> is omitted but <range> is
%1ncluded,;<start>?is set to the first 1line of
. «zange>. If <start> and <range> are omitted,
. but <inc> is included, <start> is set to <inc>.
If <start> is omitted and <inc> is included and
<range> “specifies-only -a Ppage number (e.g..
=/2), <start> is also set to <inc> on that
page. -~ .If <startl, <range> and <inc> are
omitted, ;. <start> :dis .set <O the permanent

3

increment

e options for selection of
, ) = ; 4h the same as those described
_ o 'or ‘the ‘Insert comn {see Section 2.1).

of ~line numbers to be
> is omitted, the entire

+ in line numbers
-1 EDIT-80 cannot
en increment, an
eturned. ’

moey. requirements for

n attempt to renumber
4 »Insufficient
ses, renumber
: it to disk,
d so on. (See Write

_ through 1000 will
nbered to begin at
0 and increment by




Microsoft EDIT-80 User's Guide

N,10=400:*

N9000=10000:*

N,100

N,5=2350110

Page 14

Lines 400 through the end
will be renumbered to begin
with 400 and increment by 10.

Using the permanent increment
lines 10000 through the end

will be renumbered to begin

at 9000.

Renumber the whole file using
increment 100.

This command could be used to
make room for an insert by
compactifying the ten lines
starting with 2350.



~—

Microsoft EDIT-80 User's Guide Page 15

CHAPTER 3

Intraline Editing - Alter Mode

The interline editing commands discussed thus far let you
edit by inserting, deleting or replacing entire lines. of
course many editing situations reguire changes to an
existing 1line but not necessarily retyping of the line.
Editing a line without retyping it 1is called intraline
editing, and it is done in Alter mode.

3.1 Alter Command

The Alter command is used to enter Alter mode. The
format of the command is:

A<range>
In Alter mode, EDIT-80 types the line number of the

line to be altered and waits for an Alter mode
subcommand.

3.2 Alter Mode Subcommands

Alter mode subcommands are used to move the cursor;
search for text; or insert, delete or replace text
within a line. The subcommanéds are not echoced on
the terminal,

Many of the Alter mode subcommands may be precedec
by an integer, causing the command to be executed
that number of times. (Wwhen no integer is
specified, the default is always 1.) In many cases,
the entire command may also be prefaced with 2
minus sign (=) which changes the normal direction
of the command's action. For example:

D deletes the next character
6D deletes the next 6 characters
-D deletes the last character

-12D deletes the 1§st 12 characters



Microsoft EDIT-80 User's Guide Page 16
Each Alter mode subcommand is described below. A
summary of the subcommands is given in Appendix B.

NOTE

In the following descriptions, $ represents
<break>, <ch> represents any character,
<text> represents a string of characters of
arbitrary length and 1 represents any
integer.

3.3 Cursor Position

The following commands or term

change the position of the cursor in the line,
location of the cursor |1is called the “current
position."”

inal keys are used to
The

<space> spaces over characters, i<space> moves the
cursor 4 characters to the right.

-i<space> moves the cursor i characters

the left. Characters are printed as
space over them.

to

you

moves the cursor to the end of the line.

If preceded by a minus sign, moves
cursor to the beginning of the line.

the

prints the remainder of the line and posi-

tions the cursor at the beginning of

the

line. Proceed with the next Alter mode

subcommand.

prints the remainder of the line and recy-
cles the cursor to the current position.
Proceed with the next Alter mcde

subcommand.

moves to the beginning of the next word.

A

word is defined as a contiguous collection

of letters, numbers, m, %, "sg", or "%",

iw

~advances the cursor over the next i words.
-iW moves the cursor back through i words

to the left.

3.4 Insert Text

I

inserts text. I<text>$ 1inserts thg'g;ven
text beginning at the current position.
Note that the text must be followed by 2

<break> or by <enter>.

-



Microsoft EDIT-80 User's Guide | Page 17

inserts spaces (blanks) at the current
pesition. The B command may be preceded
by an integer to insert that many spaces.
Spaces are inserted to the right of the
cursor only.

inserts characters. iG<ch> inserts i
copies of <ch>.

extends a line. The X subcommand types
the remainder of the 1line, goes into
insert mode and lets you insert text at
the end of the line. The =X subcommand
moves to the beginning of the line and
goes into insert mode. (pon't forget to
end your insertion with <break> or
<enter>.)

3.5 Delete Text

D

deletes the character at the current posi-
tion. 4D deletes i characters beginning
at the current position. ~iD deletes i
characters to the left of the current
position. Deleted characters are
surrounded by double exclamation points.

The back-arrow key may also be used to de-
lete characters. The character
immediately to the left of the current
position is deleted. i<back-arrow> 1is
equivalent to =iD.

deletes (hacks) the remaincer of the line
to the right of the cursor (or to the left
of the cursor if -H is typed) and enters
the insert mode. Text insertion proceeds
as if an I command had been typed.

deletes (kills) characters. K<ch> deletes
all characters up to but not including
<ch>. iK<ch> deletes all characters up to
the ith occurrence of <ch>. -iK<ch>
deletes all characters up to and including
the ith previous occurrence of <ch>. 1f
<ch> is not found, the command is not

executed.
\



Microsoft EDIT=-80

User's Guide Page 18

deletes (obliterates) text. O<text>$ de-
letes all text up to but not including the
next occurrence of <text>. io<text>s$
deletes all text up to the ith occurrence
of <text>, -io<text>$ deletes all
characters up to and including the ith
previous occurrence of <text>.

deletes (truncates) the remainder of the
line to the right of the cursor (or to the
left of the cursor if =T is typed) and
exits Alter mode.

deletes (zaps) words. iZ deletes the next
i words. =i2Z deletes words to the left of
the cursor.

3.6 Replace Text

R

3.7 Find Text

S

replaces text. iR<text>$ deletes the next
i characters and replaces them with
<text>. -iR<text>$ replaces text to the
left of the cursor. The deleted
characters are echoed between double
exclamation points.

changes characters one character at a
time. C<ch> changes the next character to
<ch>. Only the new character is echoed.
iC may be followed by i characters to
change that many characters; or it may be
followed by fewer than 1 characters and
terminated with <break>, in which case the
remaining characters will not be changed.
-iC does an i<back arrow> and then an icC.
The i<back arrow> |is echoed between
exclamation points.

searches for a character. S<ch> searches

- for the next occurrence of <ch> after the

current position and ncsitions the cursor
before the character. 1iS<ch> searches for
the ith occurrence of <ch>, =S<ch> and
-iS<ch> search for the (ith) previous
occurrence of <ch> and position the cursor
immediately before it. The character at
the cursor position i1s not included in the
search. If <ch> is not found, the “command
is ignored.



Microsoft EDIT-80 User's Guide Page 19

\ F finds text. F<text>$ finds the next occur-
= rence of <text> and positions the cursor
at the beginning of the string. iF<text>$
finds the ith occurrence of <text>.
-F<text>$ and =iF<text>$ £ind the (ith)
previous occurrence of <text> and position

the cursor before it.

3.8 Ending and Restarting Alter Mode

<ecr> carriage return. Prints the remainder of
the line, enters the changes and concluces
altering of that line.

A same as carriage return.

enters the changes and concludes altering
of that 1line, but does not print the
remainder of the line.

N restores the original line (changes are
not saved) and either moves to the next
line (if an A<range> command is still in
progress), or returns to command level.

. Q restores the original 1line (changes are
not saved), exits (quits) Alter mode, andé
returns to command level.

Shift € Restores the original line, stays in Alter

mode and repositions the cursor at the
beginning of the line. Echoes as AX.

3.9 Extend Command

The Extend command is igsued at command level and
is used to extend lines. The format of the command
is

X<range>

The effect of the X command is equivalent to typing
an A cormand, followed by an X subcommand. After
entering an X command, proceed by typing the text
to be inserted at the end of the line. Don't
forget you are now in Alter mode and may use any of
the Alter mode subcommands, once <break> has been
typed. )

The Extend command is particularly useful for
placing comments in assembly language programs.




Microsoft EDIT-80 User's Guide Page 20

CHAPTER 4

Find and Substitute Commands

When it is necessary to change a certain portion of text, it
is not always immediately known where that text is located
in the file. Even with a listing of the file on hand, it is
a tiresome task to scan the listing to find the line number
of a particular item that must be changed.

Thg EDIT-80 Find and Substitute commands allow the user to
quickly locate text and make necessary changes.

4.1 Find Command

mhe Find command locates a given string of text in
the file and types the line(s) containing that
string. The format of the command is:

F(<range>] [,<limit>] <enter> $<string>$

where $ represents the escape key and <limit> 1is
the number of lines containing <string> to be
found. A limit of zero will find all occurrences
of <string>. The following rules apply to the
format of the Find command:

1. 1If $<string>$ is omitted, the last string given
in a Find command is used.

2. If <limit> is omitted and $<string>$ is
included, <limit> is assumed to be 1.

3, If <limit> and $<string>$ are omitted, the
previous limit is assumed.

4, 1If <range> |is omitted and $<string>$ is
included, the entire range from the previous
Find command is used.

5. If <range> and $<string>$ are omitted, the
search for the previous string continues from
the line where the last occurrence was found.

If the search is unsuccessful, an error message is
printed.



Microsoft EDIT-680 User's Guide

Page 21

Here is a sample editing session using Find:

*FA:*$WHI(I)S

F1100 WHI(I)=0
¥F<enter>
T1400 IF

(P.GT.WHI(I))WHI(I)=P

.
01400 .
. ®F,28WLO(I)S$

T1200

WLO (1)=9999
0 00 IF (P.LT.WLO(I))WLO(I)=P
A.
01500 .
*F,.:*$AVGS
Search fails
¥TFSMEANS
T3700 MEAN=SUM/40
T,0 '
T4200 IF (P.GT.MEAN) M=M+1
ITE ; MEAN, M
TR4200

B4200 .

Find the first line that
contains WHI(I). Prints line
1100. Find the next one. Prints
line 1400. Caught a mistake

in this line. Alter it.

Find the first two lines in the
file that contain WLO(I) (rarnge
is still .:*). Prints lines

1200 and 1500. Alter line 1500.

Find the first line in the £ile
that contains AVG. There aren't
any. Try finding MEAN instead.
Prints line 3700.

Find all other lines contain-
ing MEAN. (Search begins at the
line after line 3700.) Finds
two more (4200 and 6700).

Alter line 4200, etc.



Microsoft EDIT-80 User's Guide Page 22

4.2 Substitute Command

The Substitute command locates a given string,
replaces it with a new string and types the new
line(s). The format of the command is:

S{<range>) [,<1limit>] <enter> $<o0ld string>$<new string>$

where § represents <break>, and <limit> is the
number of lines in which <old string> is to be
replaced by <new string>. A limit of zero will
replace all occurrences of <old string> with <new
string>. <new string> may be a null string. The
following rules apply to the format of the
Substitute command:

1. If $<old string>$<new string>$ are omitted, the
strings given in the last Substitute command
are used,

2. If <limit> is omitted and $<old string>$<new
string>$ are included, <limit> is assumed to be
zero.

3. If <limit> and $<old string>$<new string>$ are
omitted, the previous limit is a'ssumed.

4, If <range> is omitted and $<ocld string>3<new
string>$ are included, the entire range from
the previous Substitute command is used.

5. If <range> and $<old string>$<new string>$ are
omitted, substitution continues from where the
last substitution left off.

I1f no occurrence of <old string> is found, an error
message is printed.

Example:
*SA:SO000SALPHASBETAS From the first line
00950 BETA (K)=ABS (1.-LST (K)) to line 5000, replace
01720 WR.ILTE (6,400) BETA(XK) all occurrences of

04100 IF (BETA (K).LT.0)GOTO 9000 ALPHA with BETA.




Microsoft EDIT-80 User's Guide Page 23

CHAPTER 5

Pages

It is possible to divide an EDIT-80 file into sections
called pages, which are separated by page marks. The first
page of a file is always page 1, and EDIT-80 always enters
command level on page 1 of a multiple-page file. Each
subsequent page begins with a page mark and is numbered
sequentially. On any given page, the complete range of line
numbers (00000 to 99999 or any portion therecf) may be used.

1f EDIT-80 encounters a form feed while reading in a file,
it will enter a page mark at that point in the file. 1f
EDIT-80 encounters a line number that is less than the
previous line number, it will automatically insert a page
mark so that proper line number sequence may be maintained.
when EDIT-80 writes a file out to disk, a form feed is
output with each page mark. Then, when the. file is 1listed,
each new page of the file starts on a newvw physical page.

5.1 Specifying Page Numbers

In a single-page file, only a line number is needed
to indicate <position>. 1In a multiple-page file,
EDIT-80 must know the page number as well as the
line number to determine a <position>. That is,
<position> is indicated by

<line>[/<page>]
where

<line> is ".", "A", "*" or a number of up to five
digits.

<page> is ".", "A", "*" or a number of up to five
digits. When specifying a page, the characters
“w % "A" and "*" refer to the current page, the
first page and the last page, respectively. If
<page> is omitted, the current page is assumec.

Consequently, in a multiple-page file a <range>,
which may be indicated by

<position>:<position>
or
<position>!<number>

may also contain page numbers. If the page number
is omitted from the first line number in the range,
it is assumed to be the current -page. I1f the page



s ————— —

Microsocft EDIT-80 User's Guide Page 24

5.2

5.3

number is omitted from the second line number in
the range, it is assumed to be on the same page as
the first line number in the range.

Here are some examples of line numbers and ranges
that include page number specification:

100/2:*/* Line 100 on page 2 through
the last line on the last page

100/2:* Line 100 on page 2 through
the end of that page

100:*/5 Line 100 on the current page
through the last line on
page S

100/ Line 100 on the last page

100/.3*/3 Line 100 on the current page
through the last line on
page 3

See Appendix C for more examples of range
specification.

Inserting Page Marks

Page marks may be inserted in the file at the
discretion of the user. To insert a page mark, use
the Mark command. The format is:

M<position>

The page mark is inserted immediately after
<position>. <position> must exist or an errcr
message will be printed.

The current line reference (".") is retained after
a Mark command is executed. That is, if <position>
is before ".", then "." will be moved to the next
page and will still point to the same physical
line,

Deleting Page Marks

Page marks are deleted with the K (Kill) command.
The format of the command is:

K/<page>

The K command deletes the page mark after <page>.
For example, in a four-page file, K/2 would delete



Microsoft EDIT-80 User's Guide Page 25

S the second page mark (the page mark that started

¢ page 3), and the pages would then be numbered 1, 2,
and 3. The last line number on <page> must be
lower than the first line number on <page>+1 before
a X/<page> command can be executed.

5.4 Begin Command

Use the Begin command to return to the beginning of
a page. The format of the Begin command is:

B(/<page>]
1f <page> is omitted, the B command returns to the
beginning of page one.

5.5 Other Commands and Page Marks

1. A Delete command that crosses over & page
boundary will delete all lines in the range,
but will not delete the page mark.

2. A Print command that moves off the current page
will print the new page number prior to
printing the first line specified in the
command.

3. When output is being done with the List
command, a form feed will be printed with each
page mark, and the page number will be printed
on each page.

4. A range specified with an exclamation point may
cross a page boundary.

S, 1If the range specified in a Number command
crosses page boundaries, apumbering will start
over on each new page; the first line number
will equal the increment. Consequently, in the
Number command, <start> and the first, line of
<range> must be on the same page.

i




Microsoft EDIT-80 User's Guide Page 26

CHAPTER 6

Exiting EDIT-80

Section 1.3 introduced the Exit and Quit commands for
exiting EDIT-80. These two commands will be described more
completely in this chapter. An additional command, the
Write command, will also be presented.

6.1 Exit Command

The Exit command is used to write the file to disk
and return to TRSDOS. The format of the command
is: :

E[<filename>] (=<switch>]

The edited file is saved on the disk under
<filename>, When exiting a new file for the first
time, <filename> may be omitted. (In which case,

the opening filename 1is assigned.) Otherwise, a new
filename is required for each Exit. The previous
file serves as a back-up.

The optional <switch> controls the format of the
output. (See Section 6.5.)

6.2 Qpit Command

The Quit command is wused to return to TRSDCS
without writing the edited file to disk. To Quit
editing, simply enter:

Q

After a Quit command, all changes entered during
the editing session are lost.

6.3 Write Command

The Write command writes the edited text to disk
and thern returns to EDIT-80 command level. It does
not exit the editor, and the current position in
the file is not changed. The format of the command
is:

w[<£ilename>][-<switch>]
A filename is not required in the first Write of a

new file. A filename is required, however, in all
subsequent Write and Exit commands.



Microsoft EDIT-80 User's Guide Page 27

N The optional <switch> controls the format of the
‘ output. (See Section 6.5.)

6.4 Index Files

When reading in a file to be edited, EDIT-80
generates information it needs about each block of
the disk file. With a small file, this information
‘ is generated in a few seconds, each time the file
is read in., However, with larger files (5K or
more), the time lag reguired to read in the file
becomes significant. Thus, when EDIT-80 saves a
file of 42 or more records on the éisk, it also
saves a small file, separate from the text file,
ggztaining the required information about the text
e * :

This small file is called the index file, and it
can be read faster than the text file. EDIT-80
saves the index file under a filename that is the
same as the text filename (passwords not included),
with a Z preceding the first two letters of the
extension. For example, if the file is called
FOO/MAC.SAM, the index file is called FOO/ZMA.

When EDIT-80 is asked to edit a file, it (first
SR checks for an index file. 1f an index file exists,
EDIT-80 reads the index file instead of the text
file. Care must be taken if the text file is
modified by another editor or changed and saved in
BASIC. The user must then delete the index file
prior to editing the text file again with EDIT-80.
If the index file is not deleted, EDIT-80 will have
meaningless information about the text file.

6.5  Parameters

i

when reading in a file, EDIT-80 expects it to be in
its own representation. 1f the file appears to be
in another representation, EDIT-80 will add line

, numbers and try %o convert the file to EDIT-80
standard format. There are, however, several other
representations that EDIT-80 accepts, if the proper
switch is appended to the input filename. Switches
are always preceded by a dash (=)

tilename[/ext][.password][:d;ivei](-switch}

o z
= For example: FOO/BAS.SAM=-BASIC




Microsoft EDIT-80 User's Guide Page 28 =

6.5.1 BASIC Switch =

~,
If the BASIC switch is appended to the input -
filename, EDIT-80 will read the file using the =
following algorithm: -
1. All leading spaces and tabs are removed from
each line,
2. The first non-blank character must be a digit.
3. From 1 to 5 leading digits are converted to a
line number, More than 5 leading digits
constitutes a fatal error.
4. A tab is inserted if the first non-digit is not
a space o- a tab. If the first non-digit is a
space, it is replaced by a tab. If the first
non-digit is a tab, it is left alone.,
S. On output, if UNSEQ (see Section 6.5.2) has
been selected, leading zeros in the line number
are suppressed and the tab is converted to a
space.
Because BASIC uses line numbers to control the .
sequence of program execution, BASIC users should N

beware of renumbering with the N command,

Microsoft BASIC will ignore page marks from the i
EDIT-80 file, so a BASIC (file may have multiple

pages., Insure, however, that no line number

appears more than once in the program.

6.5.2 SEQ and UNSEQ Switchesg

If the SEQ switch is appended to the input
filename, EDIT-80 will |use the same algorithm to
interpret the text file as with the BASIC switch.
However, when the file is output, it will be in
standard EDIT-80 format, unless the UNSEQ switch is
appended to the output filename,

The UNSEQ switch on input tells EDIT-80 to append
its own line numbers to the incoming file,
regardless of what it looks like, This switch must
be used if the incoming file has digits at the
beginning of lines with high bits on that are not
to be interpreted as line numbers.

On output, the UNSEQ switch must pe specified (if
it hasn't been already) to output a non-standard )
file. That i3, if BASIC is specified on input and
UNSEQ is specified on output, the file will be
output in BASIC format. If BASIC was not specified



Microsoft EDIT-80 User's Guide Page 29

N on input and UNSEQ is specified on output, the file
will be output with no line numbers and no trailing
tab. If the UNSEQ switch was specified on input
and the user wishes to output a standard file, the
SEQ switch on output will override the UNSEQ
switch.




Microsoft EDIT-80 User's Guide

Command

Alter

Begin

Delete

Exit

Find

Insert

Kill

List

Mark

Number

Print

Quit

APPENDIX A

Alphabetic Summary of Commands

Format and Description

A<range>
Enters Alter mode.

B(<page>]
Moves to the bgginning of <page>.
Default is page 1,

D<range>
Deletes lines.,

E[<filename>] [-<switch]
Writes the edited text to disk
and exits the editor.

F(<range>][,<limit>] <enter> l $<string>$

Finds occurrences of <string>.

I{<position>] [,<inc> | ;<inc>])
Inserts lines beginning at <position>
using increment <inc>, With no
argument, continues with previous
Insert command.

K/<page>
Deletes the page mark at the end of
<page>,

L<range>
Prints lines at the line printer.

M<position>
Inserts a page mark after <position>.

N(<start>]) [,<inc> ;<inc>) [=<range>]
Renumbers the lines in <range> so
they begin at <start> and increment
by <inc>.

P(<range>]

Prints lines at the terminal.
With no argument, prints the
next 20 lines.

Q
Exits the editor without wrltxng

the edited text to disk.

Page 30

Page
15

25

1

6, 26

10

24

12

24

13

12

6, 26

L |



Microsoft EDIT-80 User's Guide Page 31

y Replace R<range>[,<inc> 1<inc>] 18
i Replaces line(s) using increment
: <inc>.

Substitute S([<range>][,<limit>]<enter> $<old string>$<new string>
Replaces <old string> with <new string>. 22

Write W(<filename>] [~<switch>] 26
Writes the edited text to disk but
does not exit the editor.

eXtend X<range> 19
Allows insertion of text at the
end of a line.




Microsoft EDIT-80 User's Guide

Page 32

APPENDIX B

Command Format
A A
B (i]B
c (=] [L]1C<ch>[...<ch>]
D (=1(L]1D
E E
F (=] [i]F$<text>$
G (i]G<ch>
H (-] H<text>$
I I<text>$
K (-] [i]1K<ch>
L L
N N
o} (-] [i]O<text>$
P P
Q Q

Alphabetic Summary of Alter Mode Subcommands

Prints the remainder of the
line, enters the changes
and concludes altering of
that line

Inserts spaces

Replaces characters
Deletes characters
Enters the changes and
concludes altering of that
line

Finds <text>

Inserts i copies of <ch>
Deletes the remainder of
the line and enters the
insert mode

Inserts <text>

Deletes all characters up
to <ch>

Positions the cursor at the
beginning of the line

Restores the original line
and either moves to the
next line (if an A<range>
command is still in
progress) or returns to
command level

Deletes all characters up
to <text> .

Recycles the cursor to the
current peosition

Exits Alter mode and
restores the original line



Microsoft EDIT-80 User's Guide

R [=] [1]R<text>$
s (=) [i]S<ch>
T (=-]T
W (=] (i)W
X [-1X
rA e (=11112
(=) —>
- .

(-1 [il<space>

<enter>

Shift €

Page 33

Replaces i characters with
<text>

Finds <ch>

Deletes the remainder of
the line and concludes
altering of the line

Moves the cursor over words
Extends the line
Deletes words

Moves the cursor to the end
of the line

Deletes characters

Moves the cursor over
characters,

Prints the remainder of the
line, enters changes and
concludes altering of that
line

Restores the original line,
stays in Alter mode and
repositions the cursor at
the beginning of the line.
Echoes as Y.



Microsoft EDIT-80 User's Guide Page 34 -
APPENDIX C —
Summary of Notation =
The notation used in this document may be defined as follows:
<line> = <number> l . ‘ A ‘ *
<page> = <number> l . I A I *
<position> = <line>[/<page>]
<range> = <position>[:<position> | t<number>]
where:
<number> = <digit> l <number><digit>
cdigite =0 1] 2|3|4als|e]7 | s | 9
Shorthand Notation for Ranges
The following "shorthand" forms of range specifications may be us ‘ :
with EDIT-80 commands. : T
sShorthand Equivalent Range |
Notation To Specified
/<page> A/<page>:*/<page> All of <page>.

/<page1>:/<page2> A/<page1>:*/<page2>

: A/1s%/*
<position>: <position>:*/*
:<position> A/1:<position>

The first line on <page'?
through the last line on
<pagez2>.

The entire file.

<position> through the ex,
of the file. e.9..,
.: is the same as o/t

The first line in the file
through <position>. e.g.
:. is the same as VARV



-

Microsoft EDIT-80 User's Guide Page 35

APPENDIX D

EDIT-80 Special Characters

<break> Aborts the command in progress
and returns to EDIT-80
command level.

- Types a tab.

Shift & Erases the line being typed
and lets you start over.
When used in Alter mode, Shift<--
restores the original line,
stays in Alter mode and
repositions the cursor at the
beginning of the lirne.

Control characters are typed by holding down the shift
key, the down-arrow (J) key and the correct alpha key
at the same time.

Control © Suspends/resumes output (at
the terminal or line printer)
from an EDIT-80 command.

Control S Balts/resumes execution of
an EDIT-80 command.



e et ———

- — - ————

Microsoft EDIT-80 User's Guide Page 36

APPENDIX E

Error Messages

Fatal Errors

Disk I/O errors are fatal. The corresponding TRSDOS error
message will be printed.

Any TRSDOS system error message is fatal.

Illegal line format

8ccurs when EDIT-B80 finds a line with strange contents or a
strange line number. This should not normally occur when
editing a file created by EDIT-80. It is usually caused by
reading files not meant for editing, such as binary files.

Edit Error Messages

Illegal command
Tells the user a nonexistent oOr ill-formed command was
typed.

Insufficient memory available

Occurs when the user has made enough changes to the file to
have exhausted EDIT-80's memory area. This should only
happen when a large file has many changes or when large
portions of code are being inserted or renumbered. A W
command should be done to compress memory.

No string given

TelTs the user the F or S command was given without a search
string. This usually happens when using the F or § command
with no arguments prior to issuing an F or S command with
arguments, or when an <escape> without a search string is
typed following the range.

No such line(s)

This message i1s issued if a command refarences a line or
range which does not exist. Usually occurs when the proper
page number is omitted from the line or range.

Line too long

This message is issued when the user attempts to enter a
line longer than 255 characters. This may happen when the
line is read or as a result of a command which alters the
line. :

Out of order ) ‘

Tndicates that the line numbers in the file would not be in
ascending order if the command were to be executedT This
frequently hzopens when trying to insert where there is ncot

Yy



Microsoft EDIT-80 User's Guide Page 37

enough room or trying to delete a page mark.

Search fails
kR informative message that tells the user a search was
unsuccessful.

Wrap around
This message is printed whenever a line greater than 99999
would be generated.

File Errors

File already exists

Yssued 1Z tﬁe user tries to give the name of an existing
file to a new file, or tries to rename a file using the name
of an existing file in an E or W command. ‘

File not found \
Yssued 1f the file specified in a command could not be
found. ‘

Illegal file sgecification
Tnforms the user that the command string contains an illegal
character of some kind.




Microsoft EDIT-80 User's Guide Page 38

APPENDIX F

Output File Format

Compilers and assemblers should ignore the line numbers and
page marks included in EDIT-80 output files (except when
included in listing files). Microsoft TRS-80 FORTRAN and
MACRO-80 both do so.

A line number consists of five decimal digits followed by a
tab character. All six bytes have the high order bit (bit
7) equal to cne. It is not recommended that EDIT-80 files
be listed with the TRSDOS LIST command. Graphics characters
may appear in the line numbers. Use EDIT-80's Print command
instead.

When writing a file with =-BASIC set, the line numbers have
the high order bits equal to zero. Each line number 1is
followed by a space that has the high order bit egual to
zero.

A page mark is a form feed character with the high order bit
equal to cne.



Microsoft EDIT-80 User's

Alter
Alter
Alter

command <« ¢ o o o
mode .« ¢ o ¢ o o o
mode subcommands .

BASIC
Begin

.WitCh.ooooo
command <« ¢ s o o

Command level
Control=-0 . .

'Contrcl-s e e o ® o 8 @

Delete command . < ¢ o o
Delete key « « o« o ¢ o &

Error messSagesS . o« o+ o o
Exit command . ¢ o o o o
Extend command « « ¢ o o

Find command . « o o« o o
Form feed . ¢ « o o o o

Index files .+ ¢« ¢ o o
Insert command « ¢« « o o

Kill
feed [ ] L] L] . L] [ ] L]

AUMbErS o« o o o o o
command o ¢ ¢ o o o

Line
Line
List
Hark ccmwd e o © o o o
Number command « « ¢ o o
Page T
Page numbers . ¢ ¢ o o
Parameters « ¢ o ¢ o o
Permanent increment .
Print command .« « o o
Quit command « ¢« ¢ o o o
Replace command . « «

SEQUENCE switch .

Shlft<“‘ e ®© ©®© e o @ o @
Space bar . « o ¢ o o
Substitute command . .« o
Switches « ¢« « o o o o =«

Tab key .« « « o o
TRSDOS * L] . * . L] L L L]

command « ¢« « o ¢ o

e o & &

L L] L] L J L]

Page 39

15-19, 32

28, 38
25

5
35
35

11, 25
6, 33

36
6, 26
19

20
23, 25, 38
27

6, 10

24

10, 12
5-7' 23' 27‘ 38
12, 25

24

13, 25, 28
23-25, 28

23

27

6, 10, 13

12, 25, 38

7, 26
11

28 i
6, 19,
16 \
22 '
27



]

UNSEQUENCE switch

Write command .

28
26



. : NE S TR IN s




e



	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf
	191.pdf
	192.pdf
	193.pdf
	194.pdf
	195.pdf
	196.pdf
	197.pdf
	198.pdf
	199.pdf
	200.pdf
	201.pdf
	202.pdf
	203.pdf
	204.pdf
	205.pdf
	206.pdf
	207.pdf
	208.pdf
	209.pdf
	210.pdf
	211.pdf
	212.pdf
	213.pdf
	214.pdf
	215.pdf
	216.pdf
	217.pdf
	218.pdf
	219.pdf
	220.pdf
	221.pdf
	222.pdf
	223.pdf
	224.pdf
	225.pdf
	226.pdf

